Three new infinite families of bent functions

  • Libo Wang
  • Baofeng WuEmail author
  • Zhuojun Liu
  • Dongdai Lin
Research Paper


Bent functions are maximally nonlinear Boolean functions with an even number of variables. They are closely related to some interesting combinatorial objects and also have important applications in coding, cryptography and sequence design. In this paper, we firstly give a necessary and sufficient condition for a type of Boolean functions, which obtained by adding the product of finitely many linear functions to given bent functions, to be bent. In the case that these known bent functions are chosen to be Kasami functions, Gold-like functions and functions with Niho exponents, respectively, three new explicit infinite families of bent functions are obtained. Computer experiments show that the proposed familes also contain such bent functions attaining optimal algebraic degree.


bent function Hadamard matrix Kasami function Gold-like function Niho exponent 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61502482, 61379139, 11526215), National Key Research Program of China (Grant No. 2016YFB0800401), and “Strategic Priority Research Program” of Chinese Academy of Sciences (Grant No. XDA06010701).


  1. 1.
    Li L, Zhang W. Constructions of vectorial Boolean functions with good cryptographic properties. Sci China Inf Sci, 2016, 59: 119103MathSciNetCrossRefGoogle Scholar
  2. 2.
    Matsui M. Linear cryptanalysis of DES cipher. In: Advances in Cryptology—Eurocrypt’93. Berlin: Springer, 1994. 386–397Google Scholar
  3. 3.
    Nyberg K. Perfect nonlinear S-boxes. In: Advances in Cryptology—EUROCRYPT. Berlin: Springer, 1991. 547: 378–386Google Scholar
  4. 4.
    Siegenthaler T. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans Inform Theory, 1984, 30: 776–780MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Rothaus O S. On bent functions. J Comb Theory Ser A, 1976, 20: 300–305CrossRefzbMATHGoogle Scholar
  6. 6.
    Dillon J F. Elementary hadamard difference sets. Dissertation for Ph.D. Degree. Washington: University of Maryland, 1974zbMATHGoogle Scholar
  7. 7.
    Canteaut A, Carlet C, Charpin P, et al. On cryptographic properties of the cosets of R(1; m). IEEE Trans Inform Theory, 2001, 47: 1494–1513MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    MacWilliams F J, Sloane N J. The Theory of Error-Correcting Codes. Amsterdam: North Holland, 1977zbMATHGoogle Scholar
  9. 9.
    Carlet C. Boolean functions for cryptography and error correcting codes. Boolean Models Meth Math Comput Sci Eng, 2010, 2: 257–397CrossRefzbMATHGoogle Scholar
  10. 10.
    Olsen J, Scholtz R, Welch L. Bent-function sequences. IEEE Trans Inform Theory, 1982, 28: 858–864MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bernasconi A, Codenottl B, Vanderkam J M. A characterization of bent functions in terms of strongly regular graphs. IEEE Trans Comput, 2001, 50: 984–985MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tan Y, Pott A, Feng T. Strongly regular graphs associated with ternary bent functions. J Comb Theory Ser A, 2010, 117: 668–682MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Budaghyan L, Kholosha A, Carlet C, et al. Univariate Niho bent functions from o-polynomials. IEEE Trans Inform Theory, 2016, 62: 2254–2265MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carlet C, Mesnager S. On Dillons class H of bent functions, Niho bent functions and o-polynomials. J Combin Theory Ser A, 2011, 118: 2392–2410MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jia W, Zeng X, Helleseth T, et al. A class of binomial bent functions over the finite fields of odd characteristic. IEEE Trans Inform Theory, 2012, 58: 6054–6063MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kocak N, Mesnager S, Ozbudak F. Bent and semi-bent functions via linear translators. In: Cryptography and Coding. Berlin: Springer, 2015. 205–224CrossRefGoogle Scholar
  17. 17.
    Li N, Helleseth T, Tang X, et al. Several new classes of bent functions from Dillon exponents. IEEE Trans Inform Theory, 2013, 59: 1818–1831MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li N, Tang X, Helleseth T. New constructions of quadratic bent functions in polynomial form. IEEE Trans Inform Theory, 2014, 60: 5760–5767MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mesnager S. A new family of hyper-bent Boolean functions in polynomial form. In: Cryptography & Coding. Berlin: Springer, 2009. 402–417CrossRefGoogle Scholar
  20. 20.
    Mesnager S. Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials. IEEE Trans Inform Theory, 2011, 57: 5996–6009MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mesnager S, Flori J P. Hyperbent functions via Dillon-like exponents. IEEE Trans Inf Theory, 2013, 59: 836–840MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mesnager S. Further constructions of infinite families of bent functions from new permutations and their duals. Cryptogr Commun, 2016, 8: 229–246MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mesnager S. Several new infinite families of bent functions and their duals. IEEE Trans Inform Theory, 2014, 60: 4397–4407MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zheng D B, Zeng X Y, Hu L. A family of p-ary binomial bent functions. IEICE Trans Fundamentals, 2011, 94: 1868–1872CrossRefGoogle Scholar
  25. 25.
    Carlet C. On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Proceedings of the 16th International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Las Vegas, 2006. 1–28zbMATHGoogle Scholar
  26. 26.
    Xu G K, Cao XW, Xu S D. Several new classes of Boolean functions with fewWalsh transform values. arXiv:1506.04886Google Scholar
  27. 27.
    Carlet C, Danielsen L E, Parker M G, et al. Self-dual bent functions. Int J Inf Coding Theory, 2010, 1: 384–399MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dobbertin H, Leander G, Canteaut A, et al. Construction of bent functions via Niho power functions. J Combin Theory Ser A, 2006, 113: 779–798MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Leander G, Kholosha A. Bent functions with 2r Niho exponents. IEEE Trans Inform Theory, 2006, 52: 5529–5532MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Budaghyan L, Carlet C, Helleseth T, et al. Further results on Niho bent functions. IEEE Trans Inform Theory, 2012, 58: 6979–6985MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Libo Wang
    • 1
    • 2
  • Baofeng Wu
    • 1
    Email author
  • Zhuojun Liu
    • 2
  • Dongdai Lin
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations