Skip to main content
Log in

Two performance enhanced control of flexible-link manipulator with system uncertainty and disturbances

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Precision control of flexible-link manipulator for space operation is challenging due to the dynamics coupling and system uncertainty. In this paper, to deal with system uncertainty and time-varying disturbance, two performance enhanced controller designs, named Composite Learning Control and Disturbance Observer Based Control are presented respectively. To overcome the nonminimum phase, using output redefinition, the dynamics is transformed to two subsystems: internal system and input-output system. For the internal dynamics, the PD (proportion differentiation) control is used with pole assignment. For the input-output subsystem, considering the unknown dynamics, the composite learning control is designed using neural modeling error while in case of disturbance, the disturbance observer based design is proposed. The stability analysis of the closed-loop system is presented via Lyapunov approach. Simulation of 2-degrees of freedom (DOF) flexible-link manipulator is conducted and the results show that the proposed methods can enhance the tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nanos K, Papadopoulos E G. On the dynamics and control of flexible joint space manipulators. Contr Eng Pract, 2015, 45: 230–243

    Article  Google Scholar 

  2. Hernandez J, Barbot J P. Sliding observer-based feedback control for flexible joints manipulator. Automatica, 1996, 32: 1243–1254

    Article  MathSciNet  MATH  Google Scholar 

  3. Moallem M, Patel R V, Khorasani K. Nonlinear tip-position tracking control of a flexible-link manipulator: theory and experiments. Automatica, 2001, 37: 1825–1834

    Article  MATH  Google Scholar 

  4. Liu Z J, Liu J K, He W. Adaptive boundary control of a flexible manipulator with input saturation. Int J Control, 2015, 89: 1191–1202

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu X Y, Chen L. Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manip- ulators. Acta Astronaut, 2015, 108: 146–155

    Article  Google Scholar 

  6. Ulrich S, Sasiadek Z J, Barkana I. Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. J Guid Contr Dyn, 2014, 37: 1961–1975

    Article  Google Scholar 

  7. Lightcap C A, Banks S A. An extended kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Trans Contr Syst Technol, 2010, 18: 91–103

    Article  Google Scholar 

  8. El-Badawy A A, Mehrez M W, Ali A R. Nonlinear modeling and control of flexible-link manipulators subjected to parametric excitation. Nonlinear Dyn, 2010, 62: 769–779

    Article  MATH  Google Scholar 

  9. Salehi M, Vossoughi G R. Impedance control of flexible base mobile manipulator using singular perturbation method and sliding mode control law. Int J Contr Automat Syst, 2008, 6: 677–688

    Google Scholar 

  10. Alam M S, Tokhi M O. Designing feedforward command shapers with multi-objective genetic optimisation for vibration control of a single-link flexible manipulator. Eng Appl Artif Intell, 2008, 21: 229–246

    Article  Google Scholar 

  11. Wang X Z, Chen D G. Output tracking control of a one-link flexible manipulator via causal inversion. IEEE Trans Contr Syst Technol, 2006, 14: 141–148

    Article  Google Scholar 

  12. Tang Y G, Sun F C, Sun Z Q, et al. Tip position control of a flexible-link manipulator with neural networks. Int J Contr Automat Syst, 2006, 4: 308–317

    Google Scholar 

  13. Tang Y G, Sun F C, Sun Z Q. Neural network control of flexible-link manipulators using sliding mode. Neurocomputing, 2006, 70: 288–295

    Article  Google Scholar 

  14. Gomes S C P, Rosa V S D, Albertini B C. Active control to flexible manipulators. IEEE/ASME Trans Mechatron, 2006, 11: 75–83

    Article  Google Scholar 

  15. Wang S X, Zhang Y, Jin Y Q, et al. Neural control of hypersonic flight dynamics with actuator fault and constraint. Sci China Inf Sci, 2015, 58: 070206

    MathSciNet  Google Scholar 

  16. Xu B, Zhang Q, Pan Y P. Neural network based dynamic surface control of hypersonic flight dynamics using small-gain theorem. Neurocomputing, 2016, 173: 690–699

    Article  Google Scholar 

  17. He W, Chen Y H, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern, 2016, 46: 620–62

    Article  Google Scholar 

  18. Chen M, Ge S S, How B V E, et al. Robust adaptive position mooring control for marine vessels. IEEE Trans Contr Syst Technol, 2013, 21: 395–409

    Article  Google Scholar 

  19. Xu B, Shi Z K, Yang C G, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Cybern, 2014, 14: 2626–2634

    Article  Google Scholar 

  20. Xu B, Shi Z K, Yang C G. Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer. Nonlinear Dyn, 2015, 80: 341–351

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen M, Ren B B, Wu Q X, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci, 2015, 58: 070202

    MathSciNet  Google Scholar 

  22. Xu B. Disturbance observer based dynamic surface control of transport aircraft with continuous heavy cargo airdrop. IEEE Trans Syst Man Cybern Syst, 2017, 47: 161–170

    Article  Google Scholar 

  23. Xu B, Sun F C, Pan Y P, et al. Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Trans Syst Man Cybern Syst, 2016, doi: 10.1109/TSMC.2016.2562502

    Google Scholar 

  24. Luca A D, Siciliano B. Closed-form dynamic model of planar multilink lightweight robots. IEEE Trans Syst Man Cybern, 1991, 21: 826–839

    Article  MathSciNet  Google Scholar 

  25. Wang D, Vidyasagar M. Transfer functions for a single flexible link. In: Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, 1989. 1042–1047

    Google Scholar 

  26. Luca A D, Lanari L. Achieving minimum phase behavior in a one-link flexible arm. In: Proceedings of International Symposium on Intelligent Robots, Bangalore, 1991. 224–235

    Google Scholar 

  27. Madhavan S K, Singh S N. Inverse trajectory control and zero dynamics sensitivity of an elastic manipulator. In: Pro- ceedings of American Control Conference, Boston, 1991. 1879–1884

    Google Scholar 

  28. Patel R V, Misra P. Transmission zero assignment in linear multivariable systems. Part II: the general case. In: Pro- ceedings of American Control Conference, Chicago, 1992. 644–648

    Google Scholar 

  29. Geniele H, Patel R V, Khorasani K. Control of a flexible-link Manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, 1995. 1217–1222

    Google Scholar 

  30. Moallem M, Khorasani K, Patel R V. An integral manifold approach for tip-position tracking of flexible multi-link manipulators. IEEE Trans Robot Automat, 1997, 13: 823–837

    Article  MATH  Google Scholar 

  31. Moallem M, Patel R V, Khorasani K. An inverse dynamics control strategy for tip position tracking of flexible multi-link manipulators. J Robot Syst, 1997, 14: 649–658

    Article  MATH  Google Scholar 

  32. Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw, 2005, 16: 195–202

    Article  Google Scholar 

  33. Xu B, Fan Y H, Zhang S M. Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping. Neurocomputing, 2015, 164: 201–209

    Article  Google Scholar 

  34. Xu B, Sun F C. Composite intelligent learning control of strict-feedback systems with disturbance. IEEE Trans Cybern, 2017, doi: 10.1109/TCYB.2017.2655053

    Google Scholar 

Download references

Acknowledgments

This work was supported by Beijing Natural Science Basic Research Plan (Grant No. 4142028) National Natural Science Foundation of China (Grant Nos. 61304098, 61622308), Aeronautical Science Foundation of China (Grant No. 2015ZA53003), Natural Science Basic Research Plan in Shaanxi Province (Grant Nos. 2014JQ8326, 2015JM6272, 2016KJXX-86), Fundamental Research Funds for the Central Universities (Grant Nos. 3102015AX001, 3102015BJ(II)CG017), and Fundamental Research Funds of Shenzhen Science and Technology Project (Grant No. JCYJ20160229172341417). The authors acknowledge Dr Xu Bin’s students Zhang Qi, Yang Daipeng, Xia Yingzhou for their help of the simulation result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Yuan, Y. Two performance enhanced control of flexible-link manipulator with system uncertainty and disturbances. Sci. China Inf. Sci. 60, 050202 (2017). https://doi.org/10.1007/s11432-016-0604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0604-6

Keywords

Navigation