Skip to main content
Log in

An overview of multi-antenna technologies for space-ground integrated networks

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Multi-antenna technologies have already achieved a series of great successes in the development of information networks. For future space-ground integrated networks (SGINs), the traditional various kinds of separated information networks will converge to a whole fully connected information network to provide more flexible and reliable services on a world scale. Regarding their great successes in existing systems, multiantenna technologies will be of critical importance for the realization of SGINs and multi-antenna technologies are definitely one of the most important enabling technologies for future converged SGINs. In this article, a comprehensive overview on multi-antenna technologies is given. We first investigate multi-antenna technologies from a theoretical viewpoint. It is shown that we can understand multi-antenna technologies in a general and unified point of view. This fact has two-fold meanings. First, the research on multi-antennas can help us understand the relationships between different technologies e.g., OFDMA, CDMA, etc. On the other hand, multi-antenna technologies are easy to integrate into various information systems. Following that, we discuss in depth the potentials and challenges of the multi-antenna technologies on different platforms and in different applications case by case. More specifically, we investigate spaceborne multi-antenna technologies, airborne multi-antenna technologies, shipborne multi-antenna technologies, etc. Moreover, the combinations of multiantenna technologies with other advanced wireless technologies e.g., physical layer network coding, cooperative communication, etc., are also elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Telatar E. Capacity of multi-antenna gaussian channels. Europ Trans Telecommun, 1999, 10: 585–595

    Article  Google Scholar 

  2. Larsson E G, Stoica P. Space-Time Block Coding for Wireless Communications. Cambridge: Cambridge University Press, 2003

  3. Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communicationsa key to gigabit wireless. Proc IEEE, 2004, 92: 198–218

    Article  Google Scholar 

  4. Zhang Z S, Chai X M, Long K P, et al. Full-duplex techniques for 5G networks: self-interference cancellation, protocol design and relay selection. IEEE Commun Mag, 2015, 53: 128–137

    Article  Google Scholar 

  5. Zhang Z S, Long K P, Vasilakos A V, et al. Full-duplex wireless communications: challenges, solutions and future research directions. Proc IEEE, 2016, 104: 1369–1409

    Article  Google Scholar 

  6. Yuan Y F, Zhu L M. Application scenarios and enabling technologies of 5G. China Commun, 2014, 11: 69–79

    Article  Google Scholar 

  7. Zhang Z S, Wang X Y, Long K P, et al. Large-scale MIMO based wireless backhaul in 5G networks. IEEE Wirel Commun, 2015, 22: 58–66

    Article  Google Scholar 

  8. Pang X D, Hong X, Yang T Y, et al. Design and implementation of an active multibeam antenna system with 64 RF channels and 256 antenna elements for massive MIMO application in 5G wireless communications. China Commun, 2014, 11: 16–23

    Google Scholar 

  9. Chockalingam A, Rajan B S. Large MIMO Systems. Cambridge: Cambridge University Press, 2014

    Google Scholar 

  10. Liolis K P, Gomez V J, Casini E, et al. Statistical modeling of dual-polarized MIMO land mobile satellite channels. IEEE Trans Commun, 2010, 58: 3077–3083

    Article  Google Scholar 

  11. King P R, Brown T W C, Kyrgiazos A, et al. Empirical-stochastic LMS-MIMO channel model implementation and validation. IEEE Trans Antenn Propag, 2012, 60: 606–614

    Article  MathSciNet  Google Scholar 

  12. Yao Y, Wang X, Chen X D, et al. Novel diversity/MIMO PIFA antenna with broadband circular polarization for multimode satellite navigation. IEEE Antenn Wirel Propag Lett, 2012, 11: 65–68

    Article  Google Scholar 

  13. Kourogiorgas C, Kvicera M, Skraparlis D, et al. Modeling of first-order statistics of the MIMO dual polarized channel at 2GHz for land mobile satellite systems under tree shadowing. IEEE Trans Antenn Propag, 2014, 62: 5410–5415

    Article  Google Scholar 

  14. Petropoulou P, Michailidis E T, Panagopoulos A D, et al. Radio propagation channel measurements for multi-antenna satellite communication systems: a survey. IEEE Antenn Propag Mag, 2014, 56: 102–122

    Article  Google Scholar 

  15. Cheffena M, Perez F F, Lacoste F, et al. Land mobile satellite dual polarized MIMO channel along roadside trees: modeling and performance evaluation. IEEE Trans Antenn Propag, 2012, 60: 597–605

    Article  Google Scholar 

  16. Arapoglou P, Liolis K, Bertinelli M, et al. MIMO over satellite: a review. IEEE Commun Surv Tutor, 2011, 13: 27–51

    Article  Google Scholar 

  17. Liolis K P, Gómez-Vilardebó J, Casini E, et al. On the statistical modeling of MIMO land mobile satellite channels: a consolidated approach. In: Proceedings of 27th AIAA International Communications Satellite Systems Conference (ICSSC), Edinburgh, 2009. 422–422

    Google Scholar 

  18. Jung Y B, Eom S Y. Dual-band horn array design using a helical exciter for mobile satellite communication terminals. IEEE Trans Antenn Propag, 2012, 60: 1336–1342

    Article  Google Scholar 

  19. Arapoglou P, Burzigotti P, Bertinelli M, et al. To MIMO or not to MIMO in mobile satellite broadcasting systems. IEEE Trans Wirel Commun, 2011, 10: 2807–2811

    Article  Google Scholar 

  20. King P R, Stavrou S. Land mobile-satellite MIMO capacity predictions. Electron Lett, 2015, 41: 1–2

    Google Scholar 

  21. Byman A, Hulkkonen A, Arapoglou P D, et al. MIMO for mobile satellite digital broadcasting: from theory to practice. IEEE Trans Vel Technol, 2016, 65: 4839–4853

    Article  Google Scholar 

  22. Joroughi V, Vázquez M, Pérez-Neira A. Precoding in multigateway multibeam satellite systems. IEEE Trans Wirel Commun, 2016, 15: 4944–4956

    Google Scholar 

  23. Arti M K, Jindal S K. OSTBC transmission in shadowed-rician land mobile satellite links. IEEE Trans Vel Technol, 2016, 65: 5771–5777

    Article  Google Scholar 

  24. King P R, Stavrou S. Capacity improvement for a land mobile single satellite MIMO system. IEEE Antenn Wirel Propag Lett, 2006, 5: 98–100

    Article  Google Scholar 

  25. Alfano G, Maio A D, Tulino A M. A theoretical framework for LMS MIMO communication systems performance analysis. IEEE Trans Inf Theory, 2010, 56: 5614–5630

    Article  MathSciNet  Google Scholar 

  26. Zheng G, Chatzinotas S, Ottersten B. Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans Wirel Commun, 2012, 11: 2308–2320

    Article  Google Scholar 

  27. Gong S H, Wei D X, Xue X W, et al. Study on the channel model and BER performance of single-polarization satellite-earth MIMO communication systems at Ka band. IEEE Trans Antenn Propag, 2014, 62: 5282–5297

    Article  Google Scholar 

  28. Zhang Z S, Long K P, Wang J P, et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun Surv Tut, 2014, 16: 513–537

    Article  Google Scholar 

  29. Zhang Z S, Long K P, Wang J P, et al. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Wirel Commun, 2013, 20: 36–42

    Article  Google Scholar 

  30. Zheng J, Li J D, Liu Q, et al. On minimizing delay with probabilistic splitting of traffic flow in heterogeneous wireless networks. China Commun, 2014, 11: 62–71

    Article  Google Scholar 

  31. Yu Q Y, Meng W X, Yang M C, et al. Virtual multi-beamforming for distributed satellite clusters in space information networks. IEEE Wirel Commun, 2016, 23: 95–101

    Article  Google Scholar 

  32. Palomar D P, Cioffi J M, Lagunas M A. Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process, 2003, 51: 2381–2401

    Article  Google Scholar 

  33. Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun, 1998, 6: 311–335

    Article  Google Scholar 

  34. Shankar B, Arapoglou P D, Ottersten B. Space-frequency coding for dual polarized hybrid mobile satellite systems. IEEE Trans Wirel Commun, 2012, 11: 2806–2814

    Google Scholar 

  35. Carcia V, Zhou Y, Shi J. Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering. IEEE Trans Wirel Commun, 2014, 13: 4297–4308

    Article  Google Scholar 

  36. Xing C W, Ma S S, Zhou Y Q. Matrix-monotonic optimization for MIMO systems. IEEE Trans Signal Process, 2015, 63: 334–348

    Article  MathSciNet  Google Scholar 

  37. Sampath H, Stoica P, Paulraj A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Trans Commun, 2002, 49: 2198–2206

    Article  Google Scholar 

  38. Xing C W, Ma Y, Zhou Y Q, et al. Transceiver optimization for multi-hop communications with per-antenna power constraints. IEEE Trans Signal Process, 2016, 64: 1519–1534

    Article  MathSciNet  Google Scholar 

  39. Masouros C, Chen J L, Tong K, et al. Large scale antenna arrays with increasing sntennas in limited physical space. China Commun, 2015, 11: 7–15

    Article  Google Scholar 

  40. Lagunas E, Sharma S, Maleki S, et al. Resource allocation for cognitive satellite communications with incumbent terrestrial networks. IEEE Trans Cogn Commun Netw, 2015, 1: 305–317

    Article  Google Scholar 

  41. Bisio I, Delucchi S, Lavagetto F, et al. Lp-problem based transmission rate allocation with packet loss and power metrics over satellite networks. IEEE Trans Vel Technol, 2016, 65: 3312–3325

    Article  Google Scholar 

  42. Shankar B, Arapoglou P D, Ottersten B. Space-frequency coding for dual polarized hybrid mobile satellite systems. IEEE Trans Wirel Commun, 2012, 11: 2806–2814

    Google Scholar 

  43. Esmaeilzadeh M, Aboutorab N, Sadeghi P. Joint optimization of throughput and packet drop rate for delay sensitive applications in TDD satellite network coded systems. IEEE Trans Commun, 2013, 62: 676–690

    Article  Google Scholar 

  44. Zhu D H, Guo Y J, Wei L, et al. Transceiver optimization for multi-antenna device-to-device communications. China Commun, 2016, 13: 110–121

    Article  Google Scholar 

  45. Miao T T, Wang N, Yang H W, et al. BER modified decode-and-forward protocol for OFDM-based linear multihop networks. China Commun, 2014, 11: 34–43

    Google Scholar 

  46. Cheffena M. High-capacity radio communication for the polar region: challenges and potential solutions. IEEE Antenn Propag Mag, 2012, 54: 238–244

    Article  Google Scholar 

  47. Fakharzadeh M, Jamali S H, Mousavi P, et al. Fast beamforming for mobile satellite receiver phased arrays: theory and experiment. IEEE Trans Antenn Propag, 2009, 57: 1645–1654

    Article  Google Scholar 

  48. Arti M K, Bhatnagar M R. Beamforming and combining in hybrid satellite-terrestrial cooperative systems. IEEE Commun Lett, 2014, 18: 483–486

    Article  Google Scholar 

  49. Jukka K, Ari H, Juha Y, et al. Applicability of MIMO to satellite communications. Int J Satell Commun Netw, 2014, 32: 247–262

    Article  Google Scholar 

  50. Christopoulos D, Chatzinotas S, Ottersten B. Multicast multigroup precoding and user scheduling for frame-based satellite communications. IEEE Trans Wirel Commun, 2015, 14: 4695–4707

    Article  Google Scholar 

  51. Lier E, Melcher R. A modular and lightweight multibeam active phased receiving array for satellite applications: design and ground testing. IEEE Antenn Propag Mag, 2009, 51: 80–90

    Article  Google Scholar 

  52. Sellathurai M, Guinand P, Lodge J. Space-time coding in mobile satellite communications using dual-polarized channels. IEEE Trans Vel Technol, 2006, 55: 188–199

    Article  Google Scholar 

  53. Chen P, Hong W, Zhang H, et al. Virtual phase shifter array and its application on Ku band mobile satellite reception. IEEE Trans Antenn Propag, 2015, 63: 1408–1416

    Article  MathSciNet  Google Scholar 

  54. Sharawi M S, Aloi D N, Rawashdeh O A. Design and implementation of embedded printed antenna arrays in small UAV wing structures. IEEE Trans Antenn Propag, 2010, 58: 2531–2538

    Article  Google Scholar 

  55. Tadayon N, Kaddoum G, Noumeir R. Inflight broadband connectivity using cellular networks. IEEE Trans Commun, 2016, 4: 1595–1606

    Google Scholar 

  56. Nawaz S J, Khan N M, Tiwana M I, et al. Airborne internet access through submarine optical fiber cables. IEEE Trans Aerosp Electron Syst, 2015, 51: 167–177

    Article  Google Scholar 

  57. Yang F C, Wang S G, Li J L, et al. An overview of Internet of vehicles. China Commun, 2014, 11: 1–15

    Article  Google Scholar 

  58. Zhou Y Z, Ai B. Quality of service improvement for high-speed railway communications. China Commun, 2014, 11: 156–167

    Article  Google Scholar 

  59. Bolandhemmat H, Fakharzadeh M, Mousavi P, et al. Active stabilization of vehicle-mounted phased-array antennas. IEEE Trans Vel Technol, 2009, 58: 2638–2650

    Article  Google Scholar 

  60. Wu Z H, Li X. An improved underwater acoustic network localization algorithm. China Commun, 2015, 12: 77–83

    Article  Google Scholar 

  61. Bhatnagar M R. Making two-way satellite relaying feasible: a differential modulation based approach. IEEE Trans Commun, 2015, 63: 2836–2847

    Article  Google Scholar 

  62. Noh H J, Lee J K, Lim J S. ANC-ALOHA: analog network coding ALOHA for satellite networks. IEEE Commun Lett, 2014, 18: 957–960

    Article  Google Scholar 

  63. Arti M K. A novel beamforming and combining scheme for two-way AF satellite systems. IEEE Trans Vel Technol, 2016, 65: 1–8

    Article  Google Scholar 

  64. Zhang C. Malicious base station and detecting malicious base station signal. China Commun, 2014, 11: 59–64

    Article  Google Scholar 

  65. Wang Y J, Liao T Q, Wang C A. An anti-eavesdrop transmission scheduling scheme based on maximizing secrecy outage probability in ad hoc networks. China Commun, 2016, 13: 176–184

    Article  Google Scholar 

  66. Zou Y L, Zhu J, Wang X B, et al. A Survey on wireless security: technical challenges, recent advances, and future trends. Proc IEEE, 2016, 104: 1727–1765

    Article  Google Scholar 

  67. Bertaux L, Medjiah S, Berthou P, et al. Software defined networking and virtualization for broadband satellite networks. IEEE Commun Mag, 2015, 53: 54–60

    Article  Google Scholar 

  68. Zhao J F, Zhou J T, Yang H J, et al. An orthogonal approach to reusable component discovery in cloud migration. China Commun, 2015, 12: 134–151

    Article  Google Scholar 

  69. Huang L, Zhou Y Q, Wang Y Y, et al. Advanced coverage optimization techniques for small cell clusters. China Commun, 2015, 12: 111–122

    Article  MathSciNet  Google Scholar 

  70. Dhungana Y, Rajatheva N, Tellambura C. Performance analysis of antenna correlation on LMS-based dual-hop AF MIMO systems. IEEE Trans Vel Technol, 2012, 61: 3590–3602

    Article  Google Scholar 

  71. An K, Lin M, Liang T, et al. Performance analysis of multi-antenna hybrid satellite-terrestrial relay networks in the presence of interference. IEEE Trans Commun, 2015, 63: 4390–4404

    Article  Google Scholar 

  72. Madhumathy P, Sivakumar D. Enabling energy efficient sensory data collection using multiple mobile sink. China Commun, 2014, 11: 29–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, S., Liu, Z. et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci. China Inf. Sci. 59, 121301 (2016). https://doi.org/10.1007/s11432-016-0588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0588-8

Keywords

Navigation