Quaternion-based robust trajectory tracking control for uncertain quadrotors

Abstract

This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Hoffmann G M, Huang H, Waslander S L. Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng Pract, 2011, 19: 1023–1036

    Article  Google Scholar 

  2. 2

    Sun C H, Duan H B. Markov decision evolutionary game theoretic learning for cooperative sensing of unmanned aerial vehicles. Sci China Technol Sci, 2015, 58: 1392–1400

    Article  Google Scholar 

  3. 3

    Tang S, Yang Q H, Qian S K, et al. Height and attitude active disturbance rejection controller design of a small-scale helicopter. Sci China Inf Sci, 2015, 58: 032202

    MATH  Google Scholar 

  4. 4

    Alexis K, Nikolakopoulos G, Tzes A. Switching model predictive attitude control for a quadrotor helicopter subject to atmosphere disturbances. Control Eng Pract, 2011, 10: 1195–1207

    Article  Google Scholar 

  5. 5

    Pounds P, Mahony R, Corke P. Modelling and control of a large quadrotor robot. Control Eng Pract, 2010, 18: 691–699

    Article  Google Scholar 

  6. 6

    Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Automat Mag, 2012, 19: 20–32

    Article  Google Scholar 

  7. 7

    Castillo P, Dzul A, Lozano R. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans Control Syst Technol, 2004, 12: 510–516

    Article  Google Scholar 

  8. 8

    Aguilar-Ibanez C, Sira-Ramirez H, Suarez-Castanon S, et al. The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach. Int J Control, 2012, 85: 69–77

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Bertrand S, Guenard N, Hamel T, et al. A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng Pract, 2011, 19: 1099–1108

    Article  Google Scholar 

  10. 10

    Besnard L, Shtessel Y B, Landrum B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J Franklin Inst, 2012, 349: 658–684

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Luque-Vega L, Castillo-Toledo B, Loukianov A G. Robust block second order sliding mode control for a quadrotor. J Franklin Inst, 2012, 349: 719–739

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Dydek Z T, Annaswamy A M, Lavretsky E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans Control Syst Technol, 2013, 21: 1400–1406

    Article  Google Scholar 

  13. 13

    Zuo Z Y. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl, 2010, 11: 2343–2355

    MathSciNet  Article  Google Scholar 

  14. 14

    Ryan T, Kim H J. LMI-based gain synthesis for simple robust quadrotor control. IEEE Trans Automat Sci Eng, 2013, 10: 1173–1178

    Article  Google Scholar 

  15. 15

    Liu H, Li D J, Xi J X, et al. Robust attitude controller design for miniature quadrotors. Int J Robust Nonlinear Control, 2016, 26: 681–696

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Liu H, Lu G, Zhong Y S. Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers. IEEE Trans Ind Electron, 2013, 60: 4627–4636

    Article  Google Scholar 

  17. 17

    Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Technol, 2006, 14: 562–571

    Article  Google Scholar 

  18. 18

    Johnson E N, Kannan S K. Adaptive trajectory control for autonomous helicopters. J Guid Control Dyn, 2005, 28: 524–538

    Article  Google Scholar 

  19. 19

    Zhang R, Quan Q, Cai K Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl, 2011, 5: 1140–1146

    MathSciNet  Article  Google Scholar 

  20. 20

    Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Trans Automat Control, 2003, 48: 413–426

    MathSciNet  Article  Google Scholar 

  21. 21

    Guerrero-Castellanos J F, Marchand N, Hably A, et al. Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng Pract, 2011, 19: 790–797

    Article  Google Scholar 

  22. 22

    Li K B, Chen L, Tang G L. Algebraic solution of differential geometric guidance command and time delay control. Scie China Technol Sci, 2015, 58: 565–573

    Article  Google Scholar 

  23. 23

    Guo S P, Li D X, Meng Y H, et al. Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci China Technol Sci, 2014, 57: 828–837

    Article  Google Scholar 

  24. 24

    Shen Y Y, Wang Y Q, Liu M L, et al. Acquisition algorithm assisted by AGC control voltage for DSSS signals. Sci China Technolog Sci, 2015, 58: 2195–2206

    Article  Google Scholar 

  25. 25

    Wang H X, Wang W Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Technol Sci, 2014, 57: 872–878

    Article  Google Scholar 

  26. 26

    Derafa L, Benallegue A, Fridman L. Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Franklin Inst, 2012, 349: 685–699

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Xu R, Ozguner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44: 233–241

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Zhao B, Xian B, Zhang Y, et al. Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. Int J Robust Nonlinear Control, 2015, 18: 3714–3731

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Liu H, Li D J, Zuo Z Y, et al. Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans Ind Electron, 2016, 63: 2263–2274

    Google Scholar 

  30. 30

    Liu H, Wang X F, Zhong Y S. Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans Ind Inform, 2015, 11: 406–415

    Article  Google Scholar 

  31. 31

    Liu H, Zhao W B, Zuo Z Y, et al. Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE Trans Ind Electron, 2016, doi: 10.1109/TIE.2016.2612618

    Google Scholar 

  32. 32

    Stevens B L, Lewis F L. Aircraft Control and Simulation. New Jersey: John Wiley & Sons, Inc., 2003

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, T., Liu, H. & Li, S. Quaternion-based robust trajectory tracking control for uncertain quadrotors. Sci. China Inf. Sci. 59, 122902 (2016). https://doi.org/10.1007/s11432-016-0582-y

Download citation

Keywords

  • quadrotor
  • quaternion
  • trajectory tracking
  • robust control