Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Quantum correlations generation and distribution in a universal covariant quantum cloning circuit

  • 101 Accesses

  • 1 Citations


We discussed the distribution and generation of quantum correlations in a universal covariant quantum cloning circuit. Specifically, we first considered the distribution of quantum correlation, i.e., quantum discord, among the four qubits of the circuit. Then, we analyzed the generation of genuine 3- or 4-qubit entanglement in the cloning process. It is found that the circuit generates genuine 4-qubit GHZ (Greenberger-Horne-Zeilinger)-type state while only W-type 3-qubit state could be generated. These results illustrate the special quantum correlation manipulation capabilities of the cloning circuit.

This is a preview of subscription content, log in to check access.


  1. 1

    Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature (London), 1982, 299: 802–803

  2. 2

    Scarani V, Iblisdir S, Gisin N, et al. Quantum cloning. Rev Mod Phys, 2005, 77: 1225–1256

  3. 3

    Fan H, Wang Y N, Jing L, et al. Quantum cloning machines and the applications. Phys Rep, 2014, 544: 241–322

  4. 4

    Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942

  5. 5

    Bužek V, Hillery M, Ziman M, et al. Programmable quantum processors. Quantum Inf Process, 2006, 5: 313–420

  6. 6

    Li J, Chen X B, Sun X M, et al. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301

  7. 7

    Zhang Z, Li J X, Liu L. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sci China Inf Sci, 2016, 59: 022316

  8. 8

    Wang F, Luo M X, Li H R, et al. Improved quantum ripple-carry addition circuit. Sci China Inf Sci, 2016, 59: 042406

  9. 9

    Bužek V, Hillery M. Quantum copying: beyond the no-cloning theorem. Phys Rev A, 1996, 54: 1844–1852

  10. 10

    Bužek V, Braunstein S L, Hillery M, et al. Quantum copying: a network. Phys Rev A, 1997, 56: 3446–3452

  11. 11

    Szabó L, Koniorczyk M, Adam P, et al. Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation. Phys Rev A, 2010, 81: 032323

  12. 12

    Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245–2248

  13. 13

    Ollivier H, Zurek W H. Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett, 2002, 88: 017901

  14. 14

    Knill E, Laflamme R. Power of one bit of quantum information. Phys Rev Lett, 1998, 81: 5672–5675

  15. 15

    Datta A, Shaji A, Caves C M. Quantum discord and the power of one qubit. Phys Rev Lett, 2008, 100: 050502

  16. 16

    Coffman V, Kundu J, Wootters W K. Distributed entanglement. Phys Rev A, 2000, 61: 052306

  17. 17

    Verstraete F, Dehaene J, De Moor B, et al. Four qubits can be entangled in nine different ways. Phys Rev A, 2002, 65: 052112

  18. 18

    Osterloh A, Siewert J. Constructing N-qubit entanglement monotones from antilinear operators. Phys Rev A, 2005, 72: 012337

  19. 19

    Ren X J, Jiang W, Zhou X, et al. Permutation-invariant monotones for multipartite entanglement characterization. Phys Rev A, 2008, 78: 012343

  20. 20

    Ren X J, Fan H. Quantum circuits for asymmetric 1 → n quantum cloning. Quantum Inf Comput, 2015, 15: 914–922

  21. 21

    Ali M, Rau A R P, Alber G. Quantum discord for two-qubit X states. Phys Rev A, 2010, 81: 042105

  22. 22

    Chen Q, Zhang C, Yu S, et al. Quantum discord of two-qubit X states. Phys Rev A, 2011, 84: 042313

  23. 23

    Ou Y C, Fan H. Bounds on negativity of superpositions. Phys Rev A, 2007, 76: 022320

  24. 24

    Yu C S, Yi X X, Song H S. Concurrence of superpositions. Phys Rev A, 2007, 75: 022332

  25. 25

    Song W, Liu N L, Chen Z B. Bounds on the multipartite entanglement of superpositions. Phys Rev A, 2007, 76: 054303

  26. 26

    Parashar P, Rana S. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states. Phys Rev A, 2011, 83: 032301

Download references


This work was supported by National Natural Science Foundation of China (Grant No. U1204114).

Author information

Correspondence to Xijun Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X. Quantum correlations generation and distribution in a universal covariant quantum cloning circuit. Sci. China Inf. Sci. 60, 122501 (2017). https://doi.org/10.1007/s11432-016-0569-2

Download citation


  • quantum information
  • quantum correlation
  • quantum discord
  • universal covariant quantum cloning circuit
  • genuine multipartite quantum correlation