Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Upper bounds on the capacity for optical intensity channels with AWGN



The channel capacity of the optical wireless communication (OWC) systems is still a problem that has not an optimal and close-form expression, in spite of OWC can be used to achieve high data rates. This paper presents novel upper bounds on the channel capacity of an optical intensity modulated and directed detection (IM/DD) system under peak-power and average-power constraints. The channel is modeled as an additive white Gaussian noise (AWGN) optical channel. The bounds are derived based on sphere-based signal space argument. Simulation results show the proposed bounds are tight at both high and low signal-to-noise ratios (SNRs). Compared to those reported bounds, the derived bounds are better at high SNRs region in particular, and the expressions are simpler and unique for the whole range of average-to-peak-power ratio.


尽管无线光通信可以实现更高的通信速率, 但是针对光通信信道容量所开展的研究仍没有得出一个最优且闭合的结论。此外, 由于传统的移动通信系统与光通信系统的调制和解调方式并不相同, 在传统移动通信中所得到的结论并不能直接应用在光通信系统中。本文主要是建立在AWGN模型下, 通过基于球体的信号空间模型理论, 在峰值功率和平均功率的限制下, 推导了IM/DD调制下的光信道容量上界表达式。与现有的结论相比, 所推导的上界不仅在高SNR下性能更优, 而且表达式更简单。

This is a preview of subscription content, log in to check access.


  1. 1

    Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems - part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

  2. 2

    Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems - part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499–509

  3. 3

    Zhao D, Long K, Zheng Y, et al. Channel power control in optical amplifiers to mitigate physical impairment in optical network. Sci China Inf Sci, 2015, 58: 022302

  4. 4

    Huang S, Zhang Y, Sun L, et al. A load balancing multi-path routing scheme based on effective voids for optical burst switching networks. Sci China Inf Sci, 2015, 58: 102305

  5. 5

    Lapidoth A, Moser S M. On the capacity of the discrete-time Poisson channel. IEEE Trans Inf Theory, 2009, 55: 303–322

  6. 6

    Wang L, Wornell G W. A refined analysis of the Poisson channel in the high-photon-efficiency regime. IEEE Trans Inf Theory, 2014, 60: 4299–4311

  7. 7

    Lapidoth A, Shapiro J H, Venkatesan V, et al. The discrete-time Poisson channel at low input powers. IEEE Trans Inf Theory, 2011, 57: 3260–3272

  8. 8

    Lai L, Liang Y, Shitz S S. On the capacity bounds for Poisson interference channels. IEEE Trans Inf Theory, 2015, 61: 223–238

  9. 9

    Aisha A, Lai L, Liang Y. Optimal power allocation for Poisson channels with time-varying background light. IEEE Trans Commun, 2015, 63: 4327–4338

  10. 10

    Alem-Karladani M M, Sepahi L, Jazayerifar M, et al. Optimum power allocation in parallel Poisson optical channel. In: Prococeedings of International Conference on Telecommunications, Zagreb, 2009. 285–288

  11. 11

    Martinez A. Spectral efficiency of optical direct detection. J Opt Soc Amer B, 2007, 24: 739–749

  12. 12

    Lapidoth A, Moser S M, Wigger M A. On the capacity of free-space optical intensity channels. IEEE Trans Inf Theory, 2009, 55: 4449–4461

  13. 13

    Agrell E, Alvarado A, Durisi G, et al. Capacity of a nonlinear optical channel with finite memory. J Lightwave Technol, 2014, 32: 2862–2876

  14. 14

    Moser S M. Capacity results of an optical intensity channel with input-dependent Gaussian noise. IEEE Trans Inf Theory, 2012, 58: 207–223

  15. 15

    You R, Kahn J M. Upper-bounding the capacity of optical IM/DD channels with multiple-subcarrier modulation and fixed bias using trigonometric moment space method. IEEE Trans Inf Theory, 2002, 48: 514–523

  16. 16

    Hranilovic S, Kschischang F R. Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise. IEEE Trans Inf Theory, 2004, 50: 784–795

  17. 17

    Wang J B, Hu Q S, Wang J, et al. Tight bounds on channel capacity for dimmable visible light communications. J Lightwave Technol, 2013, 31: 3771–3779

  18. 18

    Farid A A, Hranilovic S. Capacity bounds for wireless optical intensity channels with Gaussian noise. IEEE Trans Inf Theory, 2010, 56: 6066–6077

  19. 19

    Jiang R, Wang Z, Wang Q, et al. A tight upper bound on channel capacity for visible light communications. IEEE Commun Lett, 2016, 20: 97–100

  20. 20

    Wang Q, Wang Z, Dai L. Asymmetrical hybrid optical OFDM for visible light communications with dimming control. IEEE Photonics Technol Lett, 2015, 27: 974–977

  21. 21

    Armstrong J. OFDM for optical communications. J Lightwave Technol, 2009, 27: 189–204

  22. 22

    Hranilovic S, Kschischang F R. Optical intensity-modulated direct detection channels: signal space and lattice codes. IEEE Trans Inf Theory, 2003, 49: 1385–1399

  23. 23

    Farid A A, Hranilovic S. Channel capacity and non-uniform signalling for free-space optical intensity channels. IEEE J Sel Areas Commun, 2009, 27: 1553–1563

  24. 24

    Li X, Vucic J, Jungnickel V, et al. On the capacity of intensity-modulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications. IEEE Trans Commun, 2012, 60: 799–809

  25. 25

    Betke U, Henk M. Intrinsic volumes and lattice points of crosspolytopes. Monatsh Mathematik, 1993, 115: 27–33

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61501109, 61571105, 61223001), National High Technology Research and Development Program of China (863) (Grant No. 2013AA013601), and Jiangsu National Science Foundation (Grant No. BK20140646).

Author information

Correspondence to Zaichen Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, Z., Wu, L. et al. Upper bounds on the capacity for optical intensity channels with AWGN. Sci. China Inf. Sci. 60, 022312 (2017).

Download citation


  • channel capacity
  • optical communication
  • AWGN
  • sphere-based signal space
  • high signal-to-noise ratios (SNRs)


  • 信道容量
  • 光通信
  • AWGN
  • 基于球体的信号空间模型
  • 高信噪比