Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase

火星探测器接近段递推自适应卡尔曼滤波方法

Abstract

Celestial navigation is a commonly used autonomous navigation technique for deep space navigation. A nonlinear filter such as the unscented Kalman filter (UKF) is typically applied in a celestial navigation system (CNS). However, on account of being subject to a number of factors, such as ephemeris errors and centroid determination, the measurement model error of a CNS cannot be accurately determined. The analysis conducted in this study also shows that the measurement model error is time-variant during the Mars approach phase. This implies that covariance matrix of the measurement error R is usually inaccurate, which may induce large estimation errors that even result in filter divergence. Some adaptive methods are able to address this issue. However, traditional adaptive filters, for scaling R, usually require a sequence of innovation and are affected by the statistic window size. A new recursive adaptive UKF (RAUKF) is proposed in this paper, which only uses current innovation to scale R. The navigation performance of the proposed RAUKF method is compared with some traditional adaptive filters through simulations. The results show that this method is better than traditional adaptive filters in a CNS during the Mars approach phase.

创新点

  1. 1.

    本文对火星卫星由于质心提取引起的量测误差和火星卫星星历误差引起的量测误差进行了分析, 分析结果表明, 在火星探测器接近段, 量测模型误差是未知的时变噪声。

  2. 2.

    针对量测模型噪声方差阵(R)的时变特性, 本文提出了一种递推的自适应卡尔曼滤波方法(RAUKF), 该方法仅利用当前时刻的新息信息即可对R阵进行调节。

  3. 3.

    本文将RAUKF方法与传统无迹卡尔曼滤波(UKF), Sage-Husa滤波, 及基于新息的自适应滤波方法(AUKF)的导航精度进行了对比, 仿真结果表明, 与其他三种方法对比, 该方法可以获得最高的导航精度。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Devereux W, Moskowitz S. Trans-stellar space navigation. AIAA J, 1968, 6: 1021–1029

  2. 2

    Prestage J D, Weaver G L. Atomic clocks and oscillators for deep-space navigation and radio science. Proc IEEE, 2007, 95: 2235–2247

  3. 3

    Crouse B, Zanetti R, D’Souza C, et al. Autonomous optical lunar navigation. In: Proceedings of AAS/AIAA 19th Space Flight Mechanics Conference, Georgia, 2009. 1–3

  4. 4

    Takashi K, Tatsuaki H, Shujiro S, et al. An autonomous navigation and guidance system for MUSES-C asteroid landing. Acta Astronaut, 2003, 52: 125–131

  5. 5

    Riedel J E, Bhaskaran S, Synnott S P, et al. Navigation for the new millennium: autonomous navigation for Deep Space 1. In: Proceedings of 12nd International Symposium on Space Flight Dynamics, Darmstadt, 1997. 303–320

  6. 6

    Bhaskaran S, Desai S D, Dumont P J, et al. Orbit determination performance evaluation of the Deep Space 1 autonomous navigation system. In: Prceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Monterey, 1998. 1295–1314

  7. 7

    Mastrodemos N, Kubitschek D G, Synnott S P. Autonomous navigation for the deep impact mission encounter with comet Tempel 1. Space Sci Rev, 2005, 117: 95–121

  8. 8

    Frauenholz R B, Bhat R S, Chesley S R, et al. Deep impact navigation system performance. J Spacecraft Rockets, 2008, 45: 39–56

  9. 9

    Bhaskaran S. Optical navigation for stardust wild 2 encounter. In: Proceedings of AAS/AIAA Space Flight Mechanics Conference, Maui, 1998. 455–460

  10. 10

    Gillam S D, Owen W, Vaughan A, et al. Optical navigation for the Cassini/Huygens Mission. Adv Astronaut Sci, 2008, 129: 3–6

  11. 11

    Owen W M, Duxbury T C, Acton C H, et al. A brief history of optical navigation at JPL. Adv Astronaut Sci, 2008, 131: 329–348

  12. 12

    Patricia M B, James A C. Guidance, navigation, and control technology assessment for future planetary science mission. J Guid Control Dynam, 2015, 38: 1165–1186

  13. 13

    Bellantoni J, Dodge K. A square root formulation of the Kalman-Schmidt filter. AIAA J, 1967, 5: 1309–1314

  14. 14

    Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Hoboken: John Wiley & Sons, 2006

  15. 15

    Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems. In: Proceedings of SPIE, the International Society for Optical Engineering. Bellingham: SPIE, 1997. 182–193

  16. 16

    Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Trans Automat Contr, 2009, 54: 1254–1269

  17. 17

    Tang X, Liu Z, Zhang J. Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation. Acta Astronaut, 2012, 76: 84–94

  18. 18

    Zhang L, Yang H, Lu H, et al. Cubature Kalman filtering for relative spacecraft attitude and position estimation. Acta Astronaut, 2014, 105: 254–264

  19. 19

    Doody D. Deep Space Craft: an Overview of Interplanetary Flight. New York: Springer Berllin Heidelberg, 2010

  20. 20

    Zhao H, Gao S, He Z, et al. Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture. IEEE Trans Ind Electron, 2014, 61: 4171–4182

  21. 21

    Lu L, Zhao H, Chen B. Improved variable forgetting factor recursive algorithm based on the logarithmic cost for Volterra system identification. IEEE Trans Circ Syst II, 2016, 63: 588–592

  22. 22

    Mohamed A, Schwarz K. Adaptive Kalman filtering for INS/GPS. J Geodesy, 1999, 73: 193–203

  23. 23

    Hide C, Moore T, Smith M. Adaptive Kalman filtering for low-cost INS/GPS. J Navigation, 2003, 56: 143–152

  24. 24

    Cheng Z, He X, Jiang H, et al. Research on initial alignment for large azimuth misalignment angle with Sage Husa adaptive filtering. In: Proceedings of 25th Chinese Control and Decision Conference, Guiyang, 2013. 1744–1749

  25. 25

    Xu T, Jiang N, Sun Z. An improved adaptive Sage filter with applications in GEO orbit determination and GPS kinematic positioning. Sci China Phys Mech Astron, 2012, 55: 892–898

  26. 26

    Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration. J Navigation, 2007, 60: 517–529

  27. 27

    Ning X, Huang P, Fang J, et al. An adaptive filter method for spacecraft using gravity assist. Acta Astronaut, 2015, 109: 103–111

  28. 28

    Li Z. Error Analysis and Treatment for Deep Space Celestial Navigation during Approach Phase. Beijing: Beihang University Press, 2016

  29. 29

    McMahon J W, Scheeres D J. New solar radiation pressure force model for navigation. J Guid Contr Dynam, 2010, 33: 1418–1428

  30. 30

    Müller T, Sekiguchi T, Kaasalainen M, et al. Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa. Astron Astrophys, 2005, 443: 347–355

  31. 31

    Yeomans D, Barriot J P, Dunham D, et al. Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science, 1997, 278: 2106–2109

  32. 32

    Kaasalainen M, Tanga P. Photocentre offset in ultraprecise astrometry: implications for barycentre determination and asteroid modelling. Astron Astrophys, 2004, 416: 367–373

  33. 33

    Lowman A E, Stauder J L. Stray light lessons learned from the Mars reconnaissance orbiter’s optical navigation camera. In: Proceedings of the SPIE 49th Annual Conference on Optical Science and Technology. Bellingham: SPIE, 2004. 240–248

  34. 34

    Jacobson R, Lainey V. Martian satellite orbits and ephemerides. Planet Space Sci, 2014, 102: 35–44

  35. 35

    Jacobson R A. The orbits of the Martian satellites. Bull Am Astron Soc, 2008, 40: 481

  36. 36

    Jacobson R A. The orbits and masses of the Martian satellites and the libration of Phobos. Astronomical J, 2010, 139: 668–679

  37. 37

    Crocetto N, Gatti M, Russo P. Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. J Geodesy, 2000, 74: 447–457

  38. 38

    Koch K R, Kusche J. Regularization of geopotential determination from satellite data by variance components. J Geodesy, 2002, 76: 259–268

  39. 39

    Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models. New York: Springer-Verlag, 1999

  40. 40

    Deng X M, Fan M, Xie Y. Comparisons and evaluations of JPL ephemerides. Astron Astrophys Sinica, 2013, 38: 330–341

  41. 41

    Acton C, Backman N, Elson L, et al. Extending NASA’s SPICE ancillary information system to meet future mission needs. In: Proceedings of AIAA Space Operations Conference, Houston, 2002. 1–9

  42. 42

    Zhao H, Zhang J. A novel adaptive nonlinear filter-based pipelined feedforward second-order Volterra architecture. IEEE Trans Signal Process, 2009, 57: 237–246

  43. 43

    Karlsson R, Schon T, Gustafsson F. Complexity analysis of the marginalized particle filter. IEEE Trans Signal Process, 2004, 53: 4408–4411

  44. 44

    Hu G, Gao S, Zhong Y. A derivative UKF for tightly coupled INS/GPS integrated navigation. ISA Trans, 2015, 56: 135–144

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61233005, 61503013), National Basic Research Program of China (973) (Grant No. 2014CB744206). The authors express their gratitude to all the members of the Science & Technology on Inertial Laboratory, Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory for their valuable comments.

Author information

Correspondence to Yuqing Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ning, X., Li, Z., Wu, W. et al. Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase. Sci. China Inf. Sci. 60, 032205 (2017). https://doi.org/10.1007/s11432-016-0405-2

Download citation

Keywords

  • deep space
  • adaptive UKF
  • navigation
  • Mars approach
  • variant noise

Keywords

  • 深空探测
  • 自适应UKF
  • 导航
  • 接近段
  • 时变噪声