Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hardware-programmable optical networks



For future multi-dimensional optical networks, vast network resources provided by space division multiplexing and wavelength division multiplexing technologies, require new network architectures to scale up current network functions. The huge switch-granularity range requires a more dynamic way to deploy network resources. In this paper, we proposed a hardware-programmable optical network which deploys network resources according to incoming traffic requests. The proposed network supports node function programmability and node architecture adaptability, which are critical for dynamic function and resources deployments. Architecture-on-Demand based node architecture adapts node architectures and also enables network function programmability by incorporating with several flexible node functions. Other enabling technologies, such as ubiquitous power monitoring and dynamic optical power management, assures the programmable optical node work properly. Based on all these technologies, we established a hardware-programmable optical network testbed. Several use cases were demonstrated successfully, such as dynamic power equalization and optical debugging. These work verified the feasibility of hardware-programmable optical network, which dynamically allocate network resources for service provision. The proposed hardware programmable optical network will lead to a better hardware utilization and provide a possible solution for the future multi-dimensional optical network.



This is a preview of subscription content, log in to check access.


  1. 1

    Cisco. The Zettabyte Era: Trends and Analysis. White Papers. Cisco, 2015

  2. 2

    Wei W, Hu J Q, Qian D Y, et al. PONIARD: a programmable optical networking infrastructure for advanced research and development of future Internet. J Lightw Technol, 2009, 3: 233–242

  3. 3

    Sleiffer V, Alfiad M, van den Borne D, et al. 10 times 224-Gb/s POLMUX-16QAM transmission over 656 km of large-rm aeff PSCF with a spectral efficiency of 5.6 b/s/Hz. IEEE Photon Technol Lett, 2011, 23: 1427–1429

  4. 4

    Jansen S, Morita I, Schenk T, et al. 121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. J Lightw Technol, 2009, 27: 177–188

  5. 5

    Zhou X, Nelson L, Magill P, et al. PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid. J Lightw Technol, 2012, 30: 553–559

  6. 6

    Masato Y, Shohei B, Keisuke K, et al. 1024 QAM, 7-core (60 Gbit/s × 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz. Opt Expr, 2015, 23: 20760

  7. 7

    van Uden R G H, Amezcua Correa R, Antonio Lopez E, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon, 2014, 8: 865–870

  8. 8

    Chandrasekhar S, Gnauck A H, Liu X, et al. WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km.b/s/Hz. Opt Expr, 2012, 20: 706–711

  9. 9

    Layec P, Morea A, Vacondio F, et al. Elastic optical networks: the global evolution to software configurable optical networks. Bell Labs Tech J, 2013, 18: 133–151

  10. 10

    Recalcati M, Musumeci F, Tornatore M, et al. Benefits of elastic spectrum allocation in optical networks with dynamic traffic Communications (LATINCOM). In: Proceedings of 2014 IEEE Latin-America Conference on Communications, Cartagena de Indias, 2014. 1–6

  11. 11

    Channegowda M, Nejabati R, Simeonidou D. Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. IEEE J Opt Commun Netw, 2013, 5: A274–A282

  12. 12

    Figuerola S, Lemay M. Infrastructure services for optical networks. IEEE/OSA J Opt Commun Netw, 2009, 1: A247–A257

  13. 13

    Varvarigos E. An introduction to routing and wavelength assignment algorithms for fixed and flexgrid. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, 2013. 1–55

  14. 14

    Amaya N, Zervas G, Simeonidou D. Introducing node architecture flexibility for elastic optical networks. J Opt Commun Netw, 2013, 5: 593–596

  15. 15

    Liu X, Chandrasekhar S. Superchannel for next-generation optical networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, 2014. 1–33

  16. 16

    Dupas A, Dutisseuil E, Layec P, et al. Real-time demonstration of software-defined elastic interface for flexgrid networks, In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015. 1–3

  17. 17

    Basch E B, Egorov R, Gringeri S, et al. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J Sel Top Quantum Electron, 2006, 12: 615–626

  18. 18

    Garrich M, Oliveira J, Siqueira M, et al. Flexibility of programmable add/drop architecture for ROADMs. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, 2014. 1–3

  19. 19

    Yan S Y, Hugues-Salas E, Rancano V J F, et al. Archon: a function programmable optical interconnect architecture for transparent intra and inter data center SDM/TDM/WDM networking. J Lightw Technol, 2015, 33: 1586–1595

Download references

Author information

Correspondence to Shuangyi Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Hugues-Salas, E., Ou, Y. et al. Hardware-programmable optical networks. Sci. China Inf. Sci. 59, 102301 (2016).

Download citation


  • optical networks
  • flexibility
  • network function programmability


  • 灵活性
  • 可编程网络功能
  • 光网络
  • 102301
  • 102301