Pricing the spare bandwidth: towards maximizing data center’s profit

通过对剩余带宽计费, 最大化数据中心利润

Abstract

To provide tenants with predictable network performance, tenants are allowed to purchase specified amount of data center network (DCN) resources (e.g., bandwidth). Then, data center will reserve the purchased resources for the corresponding tenants. Meanwhile, some DCNs are work conserving, which means that the spare bandwidth will be fairly shared by all active tenants. Even though the amount of the spare bandwidth is stochastic and uncertain, DCN providers are not likely to give away it for free. Thus, data center with work conserving may impose extra payment on tenants for using the spare bandwidth. In this paper, we propose a suitable tariff to charge for the usages of DCN resources, which includes a bill for the usage of the spare bandwidth. Through theoretical analysis and simulation, we demonstrate that our tariff can incentivize tenants to adjust their purchases of bandwidths, which can lead to the improvement of data center’s profit by 27.4% without impairing the social welfare.

摘要

创新点

  1. 1.

    提出了一种新型的数据中心网络用户效能建模方式。 这种建模方式不仅考虑到了用户数据发送速率, 也考虑到了用户带宽需求被完全满足的概率。

  2. 2.

    分析了在可获得的剩余带宽为随机变量的情况下, 数据中心网络用户最优的预留带宽购买量。 我们分别展示了数据中心网络用户最优的预留带宽购买量和效用因子, 可获得的剩余带宽量, 以及对带宽计费方式的关系。

  3. 3.

    通过理论分析和仿真测试, 我们证明我们提出的计费机制能够在不损失社会福利的前提下, 有效地提高数据中心网络的利润。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun ACM, 2010, 53: 50–58

    Article  Google Scholar 

  2. 2

    Schad J, Dittrich J, Quiané-Ruiz J-A. Runtime measurements in the cloud: observing, analyzing, and reducing variance. Proc VLDB Endow, 2010, 3: 460–471

    Article  Google Scholar 

  3. 3

    Xie D, Ding N, Hu Y C, et al. The only constant is change: incorporating time-varying network reservations in data centers. In: Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, 2012. 199–210

    Google Scholar 

  4. 4

    Popa L, Yalagandula P, Banerjee S, et al. Elasticswitch: practical work-conserving bandwidth guarantees for cloud computing. In: Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Hong Kong, 2013. 351–362

    Google Scholar 

  5. 5

    Niu D, Feng C, Li B. Pricing cloud bandwidth reservations under demand uncertainty. SIGMETRICS Perform Eval Rev, 2012, 40: 151–162

    Article  Google Scholar 

  6. 6

    Zhan Y, Xu D, Ou Y. Distributednet: a reasonable pricing and flexible network architecture for datacenter. In: Proceedings of the IEEE International Conference on Communications, Sydney, 2014. 3999–4004

    Google Scholar 

  7. 7

    Mogul J C, Popa L. What we talk about when we talk about cloud network performance. http://conferences.sigcomm.org/sigcomm/2013/slides/sigcomm/08.pdf. 2013

    Google Scholar 

  8. 8

    Ersoz D, Yousif M S, Das C R. Characterizing network traffic in a cluster-based, multi-tier data center. In: Proceedings of the IEEE International Conference on Distributed Computing Systems, Toronto, 2007. 59

    Google Scholar 

  9. 9

    Benson T, Akella A, Maltz D A. Network traffic characteristics of data centers in the wild. In: Proceedings of the ACM SIGCOMM Conference on Internet Measurement, Melbourne, 2010. 267–280

    Google Scholar 

  10. 10

    Sen S, Joe-Wong C, Ha S, et al. A survey of smart data pricing: past proposals, current plans, and future trends. ACM Comput Surv, 2013, 15: 1–37

    Article  Google Scholar 

  11. 11

    Shakkottai S, Srikant R, Ozdaglar A, et al. The price of simplicity. IEEE J Sel Areas Commun, 2008, 26: 1269–1276

    Article  Google Scholar 

  12. 12

    Rodrigues H, Santos J R, Turner Y, et al. Gatekeeper: supporting bandwidth guarantees for multi-tenant datacenter networks. In: Proceedings of the USENIX Conference on I/O Virtualization, Portland, 2011. 6

    Google Scholar 

  13. 13

    Schwind M. Dynamic pricing and automated resource allocation for complex information services: reinforcement learning and combinatorial auctions. Berlin: Springer-Verlag, 2007. 27–66

    Google Scholar 

  14. 14

    Chiang M, Low S H, Calderbank A R, et al. Layering as optimization decomposition: a mathematical theory of network architectures. Proc IEEE, 2007, 95: 255–312

    Article  Google Scholar 

  15. 15

    Courcoubetis C, Weber R. Pricing Communication Networks: Economics, Technology and Modelling. Hoboken: Wiley Online Library, 2003

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Du Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Xu, D. & Yu, H. Pricing the spare bandwidth: towards maximizing data center’s profit. Sci. China Inf. Sci. 59, 102303 (2016). https://doi.org/10.1007/s11432-016-0355-0

Download citation

Keywords

  • spare bandwidth
  • data center network (DCN)
  • bandwidth reservation
  • work conserving
  • pricing/tariff

关键词

  • 剩余带宽
  • 数据中心网络
  • 带宽预留
  • 连续工作
  • 计费