Prospects and research issues in multi-dimensional all optical networks

多维全光网技术研究与展望

Abstract

Research into all optical network (AON) technology has been ongoing over the past decade, and new features are constantly being developed. The advantages of AON include large-bandwidth provisioning, lowlatency transmission and low energy consumption. The basic concept underlying AON is transmission of data signals entirely through the optical domain from source to destination nodes, with no optical-electrical-optical (O-E-O) conversion at intermediate nodes. The technologies used to implement AON have undergone a series of evolutions, which encompass time division multiplexing (TDM), frequency division multiplexing (FDM), and space division multiplexing (SDM). Multi-dimensional AON (MD-AON), which leads the trend of AON’s future architecture, provides a vibrant state for emerging applications such as cloud computing and Internet of Things (IoT). In this article, we review the evolution of AON architectures based on the different all optical switching and multiplexing technologies (i.e., TDM, FDM, and SDM), which is one of the main areas of focus in this article. The other main area is detailed discussion of implementations such as data plane and control plane technologies as well as resource optimization technologies for realizing AON. We also introduce several AON testbeds with their compositions and functions, and some potential application scenarios that can be implemented based on these testbeds

摘要

创新点

全光网技术是光通信领域的技术前沿与研究热点, 受到了学术界和工业界的广泛关注, 其优势在于能够提供大带宽、 低时延、 安全、 节能的服务保证。 全光网的基本定义是信号从源节点到目的节点的传输和交换过程全部在光域进行, 中间节点不进行 “光-电-光” 处理。 针对这一特征, 本文从 “时、 频、 空” 三个维度回顾了全光网技术的发展, 分析了每种技术的特点与优势, 提出了多维全光交换网络的体系结构, 并从数据平面、 控制平面和应用平分别描述了多维全光网的关键使能技术。 同时也对当前国内外先进的全光网络创新平台进行了介绍与分析, 展望了针对数据中心互联, 网络虚拟化, 资源按需提供等方面的全光网创新应用。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Cisco. Cisco visual networking index report. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/mobile-white-paper-c11-520862.html

  2. 2

    Qiao C M, Yoo M. Optical burst switching (OBS)—a new paradigm for an optical Internet. J High Speed Netw, 1999, 8: 69–84

    Google Scholar 

  3. 3

    Xu L S, Perros H G, Rouskas G. Techniques for optical packet switching and optical burst switching. IEEE Commun Mag, 2001, 39: 136–142

    Article  Google Scholar 

  4. 4

    Brackett C A. Dense wavelength division multiplexing networks: principles and applications. IEEE J Sel Areas Commun, 1990, 8: 948–964

    Article  Google Scholar 

  5. 5

    Jinno M, Takara H, Kozicki B. Concept and enabling technologies of spectrum-sliced elastic optical path network (SLICE). In: Proceedings of Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, 2009. 1–2

    Google Scholar 

  6. 6

    Jinno M, Takara H, Kozicki B, et al. Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s. In: Proceedings of European Conference on Optical Communication, Brussels, 2008. 1–2

    Google Scholar 

  7. 7

    Ye F H, Peucheret C, Morioka T. Capacity of space-division multiplexing with heterogeneous multi-core fibers. In: Proceedings of OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto, 2013. 1–2

    Google Scholar 

  8. 8

    Weber H, Ludwig R, Ferber S, et al. Ultrahigh-speed OTDM-transmission technology. J Lightw Technol, 2006, 24: 4616–4627

    Article  Google Scholar 

  9. 9

    Yao S, Mukherjer B, Dixit S. Advances in photonic packet switching: an overview. IEEE Commun Mag, 2000, 38: 84–94

    Google Scholar 

  10. 10

    Renaud M, Janz C, Gambini P, et al. Transparent optical packet switching: the European ACTS KEOPS project approach. J Lightw Technol, 1998, 16: 2117–2133

    Article  Google Scholar 

  11. 11

    Qiao C M, Chen Y, John R S. The potentials of optical burst switching (OBS). In: Proceedings of Optical Fiber Communications Conference (OFC), Atlanta, 2003. 219–220

    Google Scholar 

  12. 12

    Chan V W S. Optical flow switching networks. Proc IEEE, 2012, 100: 1079–1091

    Article  Google Scholar 

  13. 13

    Guy W, Chan V W, Médard M. Performance analysis of optical flow switching. In: Proceedings of IEEE International Conference on Communications (ICC), Dresden, 2009. 14–18

    Google Scholar 

  14. 14

    Ramaswami R, Sivarajan K N. Routing and wavelength assignment in all-optical networks. IEEE J Sel Areas Commun, 2008, 26: 32–44

    Article  Google Scholar 

  15. 15

    Lord A, Paul W, Abhijit M. Core networks in the flexgrid era. J Lightw Technol, 2015, 33: 1126–1135

    Article  Google Scholar 

  16. 16

    Gerstel O, Jinno M, Lord A, et al. Elastic optical networking: a new dawn for the optical layer? IEEE Commun Mag, 2012, 50: 12–20

    Article  Google Scholar 

  17. 17

    Zhang G Y, Leenheer M D, Morea A, et al. A survey on OFDM-based elastic core optical networking. IEEE Commun Surv Tutor, 2013, 15: 65–87

    Article  Google Scholar 

  18. 18

    Mizuno T, Takara H, Sano A, et al. Dense space division multiplexed transmission over multi-core and multi-mode fiber. In: Proceedings of Optical Fiber Communications Conference (OFC), Los Angeles, 2015. 1–3

    Google Scholar 

  19. 19

    Saitoh K, Matsui T, Sakamoto, T, et al. Multi-core hole-assisted fibers for high core density space division multiplexing. In: Proceedings of OptoElectronics and Communications Conference and International Conference on Photonics in Switching (OECC/PS), Sapporo, 2010. 5–9

    Google Scholar 

  20. 20

    Sakaguchi J, Awaji Y, Wada N, et al. Propagation characteristics of seven-corefiber for spatial and wavelength division multiplexed 10-Gbit/s channels. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2011. 1–3

    Google Scholar 

  21. 21

    Ehab S A. Space-division Y-splitter for multicore optical fibers. In: Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, 2016. 1–3

    Google Scholar 

  22. 22

    Richardson D J, Nelson L. Space-division multiplexing in optical fibers. Nat Photon, 2013, 7: 354–362

    Article  Google Scholar 

  23. 23

    Marom L, Dan M, Miri B. Switching solutions for WDM-SDM optical networks. IEEE Commun Mag, 2015, 53: 60–68

    Article  Google Scholar 

  24. 24

    Amaya N, Zervas G, Simeonidou D. Introducing node architecture flexibility for elastic optical networks. J Opt Commun Netw, 2013, 5: 593–608

    Article  Google Scholar 

  25. 25

    Xia T J, Fevrier H, Wang T, et al. Introduction of spectrally and spatially flexible optical networks. IEEE Commun Mag, 2015, 53: 24–33

    Article  Google Scholar 

  26. 26

    Channegowda M, Nejabati R, Simeonidou D. Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. J Opt Commun Netw, 2013, 5: 274–282

    Article  Google Scholar 

  27. 27

    Vilalta R, Mu˜noz R, Casellas R, et al. Multidomain network hypervisor for abstraction and control of openflow-enabled multitenant multitechnology transport networks. J Opt Commun Netw, 2015, 7: 55–61

    Article  Google Scholar 

  28. 28

    Nashimoto K, Tanaka N, LaBuda M, et al. High-speed PLZT optical switches for burst and packet switching. In: Proceedings of International Conference on Broadband Networks, Boston, 2005. 1118–1123

    Google Scholar 

  29. 29

    Jinno M, Takara H, Kozicki B, et al. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun Mag, 2009, 47: 66–73

    Article  Google Scholar 

  30. 30

    Baxter G, Frisken, S, Abakoumov, et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Austin, 2006. 1–3

    Google Scholar 

  31. 31

    Jinno M, Takara H, Sone Y, et al. Multiflow optical transponder for efficient multilayer optical networking. IEEE Comm Mag, 2012, 31: 71–87

    Google Scholar 

  32. 32

    Takara H, Goh T, Shibahara K, et al. Experimental demonstration of 400 Gb/s multiflow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing. In: Proceedings of European Conference on Optical Communication (ECOC), Geneva, 2011. 1–3

    Google Scholar 

  33. 33

    Sambo N, D’Errico A D, Porzi C, et al. Sliceable transponder architecture including multiwavelength source. J Opt Commun Netw, 2014, 6: 590–600

    Article  Google Scholar 

  34. 34

    Sambo N, Castoldi P, D’Errico A, et al. Next generation sliceable bandwidth variable transponders. IEEE Commun Mag, 2015, 53: 163–171

    Article  Google Scholar 

  35. 35

    Nelson L E, et al. Spatial super-channel routing in a two-span ROADM system for space division multiplexing. J Lightw Technol, 2014, 32: 783–789

    Article  Google Scholar 

  36. 36

    Klonidis D, Cugini F, Gerstel O, et al. Spectrally and spatially flexible optical network planning and operations. IEEE Commun, 2015, 53: 69–78

    Article  Google Scholar 

  37. 37

    Marom D M, Blau M. Switching solutions for WDM-SDM optical networks. IEEE Commun Mag, 2015, 53: 60–68

    Article  Google Scholar 

  38. 38

    Xia T J, Fevrier H, Wang T, et al. Introduction of spectrally and spatially flexible optical networks. IEEE Commun Mag, 2015, 53: 24–33

    Article  Google Scholar 

  39. 39

    Muhammad A, Zervas G, Saridis G, et al. Flexible and synthetic SDM networks with multi-core-fibers implemented by programmable ROADMs. In: Proceedings of European Conference on Optical Communication (ECOC), Paris, 2014. 1–3

    Google Scholar 

  40. 40

    Sakaguchi J, Klaus W, Puttnam B J, et al. SDM-WDM hybrid reconfigurable add-drop nodes for self-homodyne photonic networks. In: Proceedings of IEEE Photonics Society Summer Topical Meeting Series, Waikoloa, 2013. 117–118

    Google Scholar 

  41. 41

    Zhao Y L, Zhang J, Zhang M, et al. DREAM: dual routing engine architecture in multi-layer and multi-domain optical networks. IEEE Commun Mag, 2013, 51: 118–127

    Article  Google Scholar 

  42. 42

    McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. SIGCOMM Comput Commun Rev, 2008, 38: 69–74

    Article  Google Scholar 

  43. 43

    Gringeri S, Bitar N, Xia T J. Extending software defined network principles to include optical transport. IEEE Commun Mag, 2013, 51: 32–40

    Article  Google Scholar 

  44. 44

    Zhang J, Zhao Y L, Yang H, et al. First demonstration of enhanced software defined networking (eSDN) over elastic grid (eGrid) optical networks for data center service migration. In: Proceedings of Optical Fiber Communications Conference (OFC), Anaheim, 2013. 1–3

    Google Scholar 

  45. 45

    Yoshida Y, Kitayama K, Kai Y, et al. First demonstration of cognitive SDN orchestration: a real-time congestionaware services provisioning over OFDM-based 400G OPS and Flexi-WDM OCS networks. In: Proceedings of Optical Fiber Communications Conference (OFC), Anaheim, 2016. 1–3

    Google Scholar 

  46. 46

    Amaya N, Yan S, Channegowda M, et al. First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks. In: Proceedings of European Conference on Optical Communication (ECOC), London, 2013. 1–3

    Google Scholar 

  47. 47

    Yu X S, Zhao Y L, Zhang J, et al. Static routing and spectrum assignment in co-existing fixed/flex grid optical networks. In: Proceedings of Optical Fiber Communications Conference (OFC), San Francisco, 2014. 1–3

    Google Scholar 

  48. 48

    Wang Y, Zhang J, Zhao Y L, et al. Routing and spectrum assignment by means of ant colony optimization in flexible bandwidth networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2012. 1–3

    Google Scholar 

  49. 49

    Cai A L, Shen G X, Peng L M, et al. Novel node-arc model and multi-iteration heuristics for static routing and spectrum assignment in elastic optical networks. J Lightw Technol, 2013, 31: 3402–3413

    Article  Google Scholar 

  50. 50

    Yin Y W, Zhang H, Zhang M Y, et al. Spectral and spatial 2D fragmentation-aware routing and spectrum assignment algorithms in elastic optical networks. J Opt Commun Netw, 2013, 5: A100–A106

    Article  Google Scholar 

  51. 51

    Fukuda T, Liu L, Baba K I, et al. GMPLS control plane with distributed multipath RMSA for elastic optical networks. J Lightw Technol, 2015, 33: 1522–1530

    Article  Google Scholar 

  52. 52

    Yin Y W, Zhang M Y, Zhu Z Q, et al. Fragmentation-aware routing, modulation and spectrum assignment algorithms in elastic optical networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Anaheim, 2013. 1–3

    Google Scholar 

  53. 53

    Patel A N, Ji P N, Jue J P, et al. Routing, wavelength assignment, and spectrum allocation in wavelength-convertible flexible optical WDM (WC-FWDM) networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2012. 1–3

    Google Scholar 

  54. 54

    Wang N N, Jue J P. Holding-time-aware routing, modulation, and spectrum assignment for elastic optical networks. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 2180–2185

    Google Scholar 

  55. 55

    Tornatore M, Rottondi C, Goscien R, et al. On the complexity of routing and spectrum assignment in flexible-grid ring networks. J Opt Commun Netw, 2015, 7: A256–A267

    Article  Google Scholar 

  56. 56

    Dallaglio M, Giorgetti A, Sambo N, et al. Routing, spectrum, and transponder assignment in elastic optical networks. J Lightw Technol, 2015, 33: 4648–4658

    Article  Google Scholar 

  57. 57

    Fujii S, Hirota Y, Watanabe T, et al. Dynamic spectrum and core allocation with spectrum region reducing costs of building modules in AoD nodes. In: Proceedings of International Telecommunications Network Strategy and Planning Symposium (Networks), Funchal, 2014. 1–6

    Google Scholar 

  58. 58

    Fujii S, Hirota Y, Tode H. On-demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks. J Opt Commun Netw, 2014, 6: 1059–1071

    Article  Google Scholar 

  59. 59

    Muhammad A, Zervas G, Simeonidou D, et al. Routing, spectrum and core allocation in flexgrid SDM networks with multi-core fibers. In: Proceedings of Optical Network Design and Modeling (ONDM), Stockholm, 2014. 192–197

    Google Scholar 

  60. 60

    Muhammad A, Zervas G, Forchheimer R. Resource allocation for space-division multiplexing: optical white box versus optical black box networking. J Lightw Technol, 2015, 33: 4928–4941

    Article  Google Scholar 

  61. 61

    Dzanko M, Furdek M, Gonzalez N A, et al. Self-healing optical networks with architecture on demand nodes. In: Proceedings of European Conference on Optical Communication (ECOC), London, 2013. 1–3

    Google Scholar 

  62. 62

    Garrich M, Amaya N, Zervas G S, et al. Architecture on demand design for high-capacity optical SDM/TDM/FDM switching. J Opt Commun Netw, 2015, 7: 21–35

    Article  Google Scholar 

  63. 63

    Muhammad A, Zervas G S, Zervas N, et al. Cost-efficient design of flexible optical networks implemented by architecture on demand. In: Proceedings of Optical Fiber Communication Conference (OFC), San Francisco, 2014. 1–3

    Google Scholar 

  64. 64

    Chen B W, Zhang J, Xie W, et al. Cost-effective survivable virtual optical network mapping in flexible bandwidth optical networks. J Lightw Technol, 2016, 34: 2398–2412

    Article  Google Scholar 

  65. 65

    Chen B W, Zhang J, Zhao Y L, et al. Energy and spectrum efficiency with multi-flow transponders and elastic regenerators in survivable flexible bandwidth virtual optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), San Francisco, 2014. 1–3

    Google Scholar 

  66. 66

    Wang X, Zhang Q, Kim I, et al. Virtual network provisioning over distance-adaptive flexible-grid optical networks. J Opt Commun Netw, 2015, 7: A318–A325

    Article  Google Scholar 

  67. 67

    Xie W S, Jue J P, Zhang Q, et al. Survivable impairment-constrained virtual optical network mapping in flexible-grid optical networks. J Opt Commun Netw, 2014, 6: 1008–1017

    Article  Google Scholar 

  68. 68

    Nejabati R, Peng S P, Channegowda M, et al. SDN and NFV convergence a technology enabler for abstracting and virtualising hardware and control of optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2015. 1–3

    Google Scholar 

  69. 69

    Mu˜noz R, Vilalta R, Casellas R, et al. SDN/NFV orchestration for dynamic deployment of virtual SDN controllers as VNF for multi-tenant optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2015. 1–3

    Google Scholar 

  70. 70

    Vilalta R, Mu˜noz R, Mayoral A, et al. Transport network function virtualization. J Lightw Technol, 2015, 33: 1557–1564

    Article  Google Scholar 

  71. 71

    Munoz R, Vilalta R, Casellas R, et al. Experimental assessment of ABNO-based network orchestration of end-to-end multi-layer (OPS/OCS) provisioning across SDN/OpenFlow and GMPLS/PCE control domains. In: Proceedings of European Conference on Optical Communication, Cannes, 2014. 1–3

    Google Scholar 

  72. 72

    Amaya N, Yan S, Channegowda M, et al. First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks. In: Proceedings of European Conference on Optical Communication, London, 2013. 1–3

    Google Scholar 

  73. 73

    Ji Y F, Zhang J, Zhao Y L, et al. All optical switching networks with energy efficient technologies from components to networking. J Sel Areas Commun, 2014, 32: 1600–1614

    Article  Google Scholar 

  74. 74

    Zhang J W, Ji Y F, Zhang J, et al. Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity. IEEE Commun Mag, 2015, 53: 90–98

    Article  Google Scholar 

  75. 75

    Yu X S, Zhang J, Zhao Y L, et al. Spectrum compactness based defragmentation in flexible bandwidth optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2012. 1–3

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuefeng Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Zhang, J., Zhao, Y. et al. Prospects and research issues in multi-dimensional all optical networks. Sci. China Inf. Sci. 59, 101301 (2016). https://doi.org/10.1007/s11432-016-0324-7

Download citation

Keywords

  • all optical network
  • multi-dimensional optical switching
  • software-defined optical network
  • optical network virtualization
  • all optical network innovation

关键词

  • 全光网
  • 多维光交换
  • 软件定义光网络
  • 光网络虚拟化
  • 全光网创新应用