Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prospects and research issues in multi-dimensional all optical networks

多维全光网技术研究与展望

Abstract

Research into all optical network (AON) technology has been ongoing over the past decade, and new features are constantly being developed. The advantages of AON include large-bandwidth provisioning, lowlatency transmission and low energy consumption. The basic concept underlying AON is transmission of data signals entirely through the optical domain from source to destination nodes, with no optical-electrical-optical (O-E-O) conversion at intermediate nodes. The technologies used to implement AON have undergone a series of evolutions, which encompass time division multiplexing (TDM), frequency division multiplexing (FDM), and space division multiplexing (SDM). Multi-dimensional AON (MD-AON), which leads the trend of AON’s future architecture, provides a vibrant state for emerging applications such as cloud computing and Internet of Things (IoT). In this article, we review the evolution of AON architectures based on the different all optical switching and multiplexing technologies (i.e., TDM, FDM, and SDM), which is one of the main areas of focus in this article. The other main area is detailed discussion of implementations such as data plane and control plane technologies as well as resource optimization technologies for realizing AON. We also introduce several AON testbeds with their compositions and functions, and some potential application scenarios that can be implemented based on these testbeds

摘要

创新点

全光网技术是光通信领域的技术前沿与研究热点, 受到了学术界和工业界的广泛关注, 其优势在于能够提供大带宽、 低时延、 安全、 节能的服务保证。 全光网的基本定义是信号从源节点到目的节点的传输和交换过程全部在光域进行, 中间节点不进行 “光-电-光” 处理。 针对这一特征, 本文从 “时、 频、 空” 三个维度回顾了全光网技术的发展, 分析了每种技术的特点与优势, 提出了多维全光交换网络的体系结构, 并从数据平面、 控制平面和应用平分别描述了多维全光网的关键使能技术。 同时也对当前国内外先进的全光网络创新平台进行了介绍与分析, 展望了针对数据中心互联, 网络虚拟化, 资源按需提供等方面的全光网创新应用。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Cisco. Cisco visual networking index report. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/mobile-white-paper-c11-520862.html

  2. 2

    Qiao C M, Yoo M. Optical burst switching (OBS)—a new paradigm for an optical Internet. J High Speed Netw, 1999, 8: 69–84

  3. 3

    Xu L S, Perros H G, Rouskas G. Techniques for optical packet switching and optical burst switching. IEEE Commun Mag, 2001, 39: 136–142

  4. 4

    Brackett C A. Dense wavelength division multiplexing networks: principles and applications. IEEE J Sel Areas Commun, 1990, 8: 948–964

  5. 5

    Jinno M, Takara H, Kozicki B. Concept and enabling technologies of spectrum-sliced elastic optical path network (SLICE). In: Proceedings of Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, 2009. 1–2

  6. 6

    Jinno M, Takara H, Kozicki B, et al. Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s. In: Proceedings of European Conference on Optical Communication, Brussels, 2008. 1–2

  7. 7

    Ye F H, Peucheret C, Morioka T. Capacity of space-division multiplexing with heterogeneous multi-core fibers. In: Proceedings of OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), Kyoto, 2013. 1–2

  8. 8

    Weber H, Ludwig R, Ferber S, et al. Ultrahigh-speed OTDM-transmission technology. J Lightw Technol, 2006, 24: 4616–4627

  9. 9

    Yao S, Mukherjer B, Dixit S. Advances in photonic packet switching: an overview. IEEE Commun Mag, 2000, 38: 84–94

  10. 10

    Renaud M, Janz C, Gambini P, et al. Transparent optical packet switching: the European ACTS KEOPS project approach. J Lightw Technol, 1998, 16: 2117–2133

  11. 11

    Qiao C M, Chen Y, John R S. The potentials of optical burst switching (OBS). In: Proceedings of Optical Fiber Communications Conference (OFC), Atlanta, 2003. 219–220

  12. 12

    Chan V W S. Optical flow switching networks. Proc IEEE, 2012, 100: 1079–1091

  13. 13

    Guy W, Chan V W, Médard M. Performance analysis of optical flow switching. In: Proceedings of IEEE International Conference on Communications (ICC), Dresden, 2009. 14–18

  14. 14

    Ramaswami R, Sivarajan K N. Routing and wavelength assignment in all-optical networks. IEEE J Sel Areas Commun, 2008, 26: 32–44

  15. 15

    Lord A, Paul W, Abhijit M. Core networks in the flexgrid era. J Lightw Technol, 2015, 33: 1126–1135

  16. 16

    Gerstel O, Jinno M, Lord A, et al. Elastic optical networking: a new dawn for the optical layer? IEEE Commun Mag, 2012, 50: 12–20

  17. 17

    Zhang G Y, Leenheer M D, Morea A, et al. A survey on OFDM-based elastic core optical networking. IEEE Commun Surv Tutor, 2013, 15: 65–87

  18. 18

    Mizuno T, Takara H, Sano A, et al. Dense space division multiplexed transmission over multi-core and multi-mode fiber. In: Proceedings of Optical Fiber Communications Conference (OFC), Los Angeles, 2015. 1–3

  19. 19

    Saitoh K, Matsui T, Sakamoto, T, et al. Multi-core hole-assisted fibers for high core density space division multiplexing. In: Proceedings of OptoElectronics and Communications Conference and International Conference on Photonics in Switching (OECC/PS), Sapporo, 2010. 5–9

  20. 20

    Sakaguchi J, Awaji Y, Wada N, et al. Propagation characteristics of seven-corefiber for spatial and wavelength division multiplexed 10-Gbit/s channels. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2011. 1–3

  21. 21

    Ehab S A. Space-division Y-splitter for multicore optical fibers. In: Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, 2016. 1–3

  22. 22

    Richardson D J, Nelson L. Space-division multiplexing in optical fibers. Nat Photon, 2013, 7: 354–362

  23. 23

    Marom L, Dan M, Miri B. Switching solutions for WDM-SDM optical networks. IEEE Commun Mag, 2015, 53: 60–68

  24. 24

    Amaya N, Zervas G, Simeonidou D. Introducing node architecture flexibility for elastic optical networks. J Opt Commun Netw, 2013, 5: 593–608

  25. 25

    Xia T J, Fevrier H, Wang T, et al. Introduction of spectrally and spatially flexible optical networks. IEEE Commun Mag, 2015, 53: 24–33

  26. 26

    Channegowda M, Nejabati R, Simeonidou D. Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. J Opt Commun Netw, 2013, 5: 274–282

  27. 27

    Vilalta R, Mu˜noz R, Casellas R, et al. Multidomain network hypervisor for abstraction and control of openflow-enabled multitenant multitechnology transport networks. J Opt Commun Netw, 2015, 7: 55–61

  28. 28

    Nashimoto K, Tanaka N, LaBuda M, et al. High-speed PLZT optical switches for burst and packet switching. In: Proceedings of International Conference on Broadband Networks, Boston, 2005. 1118–1123

  29. 29

    Jinno M, Takara H, Kozicki B, et al. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun Mag, 2009, 47: 66–73

  30. 30

    Baxter G, Frisken, S, Abakoumov, et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Austin, 2006. 1–3

  31. 31

    Jinno M, Takara H, Sone Y, et al. Multiflow optical transponder for efficient multilayer optical networking. IEEE Comm Mag, 2012, 31: 71–87

  32. 32

    Takara H, Goh T, Shibahara K, et al. Experimental demonstration of 400 Gb/s multiflow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing. In: Proceedings of European Conference on Optical Communication (ECOC), Geneva, 2011. 1–3

  33. 33

    Sambo N, D’Errico A D, Porzi C, et al. Sliceable transponder architecture including multiwavelength source. J Opt Commun Netw, 2014, 6: 590–600

  34. 34

    Sambo N, Castoldi P, D’Errico A, et al. Next generation sliceable bandwidth variable transponders. IEEE Commun Mag, 2015, 53: 163–171

  35. 35

    Nelson L E, et al. Spatial super-channel routing in a two-span ROADM system for space division multiplexing. J Lightw Technol, 2014, 32: 783–789

  36. 36

    Klonidis D, Cugini F, Gerstel O, et al. Spectrally and spatially flexible optical network planning and operations. IEEE Commun, 2015, 53: 69–78

  37. 37

    Marom D M, Blau M. Switching solutions for WDM-SDM optical networks. IEEE Commun Mag, 2015, 53: 60–68

  38. 38

    Xia T J, Fevrier H, Wang T, et al. Introduction of spectrally and spatially flexible optical networks. IEEE Commun Mag, 2015, 53: 24–33

  39. 39

    Muhammad A, Zervas G, Saridis G, et al. Flexible and synthetic SDM networks with multi-core-fibers implemented by programmable ROADMs. In: Proceedings of European Conference on Optical Communication (ECOC), Paris, 2014. 1–3

  40. 40

    Sakaguchi J, Klaus W, Puttnam B J, et al. SDM-WDM hybrid reconfigurable add-drop nodes for self-homodyne photonic networks. In: Proceedings of IEEE Photonics Society Summer Topical Meeting Series, Waikoloa, 2013. 117–118

  41. 41

    Zhao Y L, Zhang J, Zhang M, et al. DREAM: dual routing engine architecture in multi-layer and multi-domain optical networks. IEEE Commun Mag, 2013, 51: 118–127

  42. 42

    McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. SIGCOMM Comput Commun Rev, 2008, 38: 69–74

  43. 43

    Gringeri S, Bitar N, Xia T J. Extending software defined network principles to include optical transport. IEEE Commun Mag, 2013, 51: 32–40

  44. 44

    Zhang J, Zhao Y L, Yang H, et al. First demonstration of enhanced software defined networking (eSDN) over elastic grid (eGrid) optical networks for data center service migration. In: Proceedings of Optical Fiber Communications Conference (OFC), Anaheim, 2013. 1–3

  45. 45

    Yoshida Y, Kitayama K, Kai Y, et al. First demonstration of cognitive SDN orchestration: a real-time congestionaware services provisioning over OFDM-based 400G OPS and Flexi-WDM OCS networks. In: Proceedings of Optical Fiber Communications Conference (OFC), Anaheim, 2016. 1–3

  46. 46

    Amaya N, Yan S, Channegowda M, et al. First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks. In: Proceedings of European Conference on Optical Communication (ECOC), London, 2013. 1–3

  47. 47

    Yu X S, Zhao Y L, Zhang J, et al. Static routing and spectrum assignment in co-existing fixed/flex grid optical networks. In: Proceedings of Optical Fiber Communications Conference (OFC), San Francisco, 2014. 1–3

  48. 48

    Wang Y, Zhang J, Zhao Y L, et al. Routing and spectrum assignment by means of ant colony optimization in flexible bandwidth networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2012. 1–3

  49. 49

    Cai A L, Shen G X, Peng L M, et al. Novel node-arc model and multi-iteration heuristics for static routing and spectrum assignment in elastic optical networks. J Lightw Technol, 2013, 31: 3402–3413

  50. 50

    Yin Y W, Zhang H, Zhang M Y, et al. Spectral and spatial 2D fragmentation-aware routing and spectrum assignment algorithms in elastic optical networks. J Opt Commun Netw, 2013, 5: A100–A106

  51. 51

    Fukuda T, Liu L, Baba K I, et al. GMPLS control plane with distributed multipath RMSA for elastic optical networks. J Lightw Technol, 2015, 33: 1522–1530

  52. 52

    Yin Y W, Zhang M Y, Zhu Z Q, et al. Fragmentation-aware routing, modulation and spectrum assignment algorithms in elastic optical networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Anaheim, 2013. 1–3

  53. 53

    Patel A N, Ji P N, Jue J P, et al. Routing, wavelength assignment, and spectrum allocation in wavelength-convertible flexible optical WDM (WC-FWDM) networks. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles, 2012. 1–3

  54. 54

    Wang N N, Jue J P. Holding-time-aware routing, modulation, and spectrum assignment for elastic optical networks. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 2180–2185

  55. 55

    Tornatore M, Rottondi C, Goscien R, et al. On the complexity of routing and spectrum assignment in flexible-grid ring networks. J Opt Commun Netw, 2015, 7: A256–A267

  56. 56

    Dallaglio M, Giorgetti A, Sambo N, et al. Routing, spectrum, and transponder assignment in elastic optical networks. J Lightw Technol, 2015, 33: 4648–4658

  57. 57

    Fujii S, Hirota Y, Watanabe T, et al. Dynamic spectrum and core allocation with spectrum region reducing costs of building modules in AoD nodes. In: Proceedings of International Telecommunications Network Strategy and Planning Symposium (Networks), Funchal, 2014. 1–6

  58. 58

    Fujii S, Hirota Y, Tode H. On-demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks. J Opt Commun Netw, 2014, 6: 1059–1071

  59. 59

    Muhammad A, Zervas G, Simeonidou D, et al. Routing, spectrum and core allocation in flexgrid SDM networks with multi-core fibers. In: Proceedings of Optical Network Design and Modeling (ONDM), Stockholm, 2014. 192–197

  60. 60

    Muhammad A, Zervas G, Forchheimer R. Resource allocation for space-division multiplexing: optical white box versus optical black box networking. J Lightw Technol, 2015, 33: 4928–4941

  61. 61

    Dzanko M, Furdek M, Gonzalez N A, et al. Self-healing optical networks with architecture on demand nodes. In: Proceedings of European Conference on Optical Communication (ECOC), London, 2013. 1–3

  62. 62

    Garrich M, Amaya N, Zervas G S, et al. Architecture on demand design for high-capacity optical SDM/TDM/FDM switching. J Opt Commun Netw, 2015, 7: 21–35

  63. 63

    Muhammad A, Zervas G S, Zervas N, et al. Cost-efficient design of flexible optical networks implemented by architecture on demand. In: Proceedings of Optical Fiber Communication Conference (OFC), San Francisco, 2014. 1–3

  64. 64

    Chen B W, Zhang J, Xie W, et al. Cost-effective survivable virtual optical network mapping in flexible bandwidth optical networks. J Lightw Technol, 2016, 34: 2398–2412

  65. 65

    Chen B W, Zhang J, Zhao Y L, et al. Energy and spectrum efficiency with multi-flow transponders and elastic regenerators in survivable flexible bandwidth virtual optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), San Francisco, 2014. 1–3

  66. 66

    Wang X, Zhang Q, Kim I, et al. Virtual network provisioning over distance-adaptive flexible-grid optical networks. J Opt Commun Netw, 2015, 7: A318–A325

  67. 67

    Xie W S, Jue J P, Zhang Q, et al. Survivable impairment-constrained virtual optical network mapping in flexible-grid optical networks. J Opt Commun Netw, 2014, 6: 1008–1017

  68. 68

    Nejabati R, Peng S P, Channegowda M, et al. SDN and NFV convergence a technology enabler for abstracting and virtualising hardware and control of optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2015. 1–3

  69. 69

    Mu˜noz R, Vilalta R, Casellas R, et al. SDN/NFV orchestration for dynamic deployment of virtual SDN controllers as VNF for multi-tenant optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2015. 1–3

  70. 70

    Vilalta R, Mu˜noz R, Mayoral A, et al. Transport network function virtualization. J Lightw Technol, 2015, 33: 1557–1564

  71. 71

    Munoz R, Vilalta R, Casellas R, et al. Experimental assessment of ABNO-based network orchestration of end-to-end multi-layer (OPS/OCS) provisioning across SDN/OpenFlow and GMPLS/PCE control domains. In: Proceedings of European Conference on Optical Communication, Cannes, 2014. 1–3

  72. 72

    Amaya N, Yan S, Channegowda M, et al. First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks. In: Proceedings of European Conference on Optical Communication, London, 2013. 1–3

  73. 73

    Ji Y F, Zhang J, Zhao Y L, et al. All optical switching networks with energy efficient technologies from components to networking. J Sel Areas Commun, 2014, 32: 1600–1614

  74. 74

    Zhang J W, Ji Y F, Zhang J, et al. Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity. IEEE Commun Mag, 2015, 53: 90–98

  75. 75

    Yu X S, Zhang J, Zhao Y L, et al. Spectrum compactness based defragmentation in flexible bandwidth optical networks. In: Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, 2012. 1–3

Download references

Author information

Correspondence to Yuefeng Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Zhang, J., Zhao, Y. et al. Prospects and research issues in multi-dimensional all optical networks. Sci. China Inf. Sci. 59, 101301 (2016). https://doi.org/10.1007/s11432-016-0324-7

Download citation

Keywords

  • all optical network
  • multi-dimensional optical switching
  • software-defined optical network
  • optical network virtualization
  • all optical network innovation

关键词

  • 全光网
  • 多维光交换
  • 软件定义光网络
  • 光网络虚拟化
  • 全光网创新应用