L 1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy

采用气动/矢量推力控制策略的L 1自适应高超音速飞行控制器设计


The extreme aeroheating at hypersonic regime and the insufficient dynamic pressure in the near space limit the achievable performance of the hypersonic vehicles using aerosurfaces alone. In this paper, an integrated pneumatic and thrust vectoring control strategy is employed to design a control scheme for the longitudinal dynamics of a hypersonic vehicle model. The methodology reposes upon a division of the model dynamics, and an L 1 adaptive control architecture is applied to the design of the inner-loop and outer-loop controllers. Further, a control allocation algorithm is developed to coordinate pneumatic and thrust vectoring control. Simulation results demonstrate that the allocation algorithm is effective in control coordination, and the proposed control scheme achieves excellent tracking performance in spite of aerodynamic uncertainties.


受到高超音速飞行状态下气动加热效应,以及在临近空间飞行时气动舵面效率的影响,仅采用舵面控制将限制控制性能的发挥。本文采用了融合气动/矢量推力的控制策略,采用L 1自适应控制方法为一款通用高超音速飞行器纵向模型设计了控制器。通过调整分配参数,在不同飞行段改变气动控制和矢量推力控制的权重,从而突破上述限制。仿真结果验证了这一控制策略的有效性,同时,在引入气动参数不确定性的情况下取得了良好的控制精度。

This is a preview of subscription content, access via your institution.


  1. 1

    Hallion R. The history of hypersonics: or, ‘Back to the future: again and again’. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2005. AIAA 2005-329

    Google Scholar 

  2. 2

    Fiorentini L, Serrani A, Bolender M A, et al. Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model. In: Proceedings of American Control Conference, Washington, 2008. 3458–3463

    Google Scholar 

  3. 3

    Christopher P, Morgan B, Ilya K. Model predictive control guidance with extended command governor inner-Loop flight control for hypersonic vehicles. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-5028

    Google Scholar 

  4. 4

    Daniel P W, Anuradha M A, Jonathan A M, et al. Adaptive control of a generic hypersonic vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-4514

    Google Scholar 

  5. 5

    Preller D, Smart M K. Longitudinal control strategy for hypersonic accelerating vehicles. J Spacecr Rockets, 2015, 52: 993–999

    Article  Google Scholar 

  6. 6

    Buschek H, Calise A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J Guid Control Dyn, 1997, 20: 42–48

    Article  MATH  Google Scholar 

  7. 7

    Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. J Guid Control Dyn, 1999, 22: 87–95

    Article  Google Scholar 

  8. 8

    Lind R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. J Guid Control Dyn, 2002, 25: 733–739

    Article  Google Scholar 

  9. 9

    Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid Control Dyn, 2004, 27: 829–838

    Article  Google Scholar 

  10. 10

    Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J Guid Control Dyn, 2009, 32: 402–417

    Article  Google Scholar 

  11. 11

    Wilcox Z D, MacKunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J Guid Control Dyn, 2010, 33: 1213–1224

    Article  Google Scholar 

  12. 12

    Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn, 2013, 73: 229–244

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Bu X W, Wu X Y, Zhang R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J Frankl Inst-Eng Appl Math, 2015, 352: 1739–1765

    MathSciNet  Article  Google Scholar 

  14. 14

    Yang J, Li S H, Sun C Y, et al. Nonlinear-disturbance-observer-based robust flight control for air-breathing hypersonic vehicles. IEEE Trans Aerosp Electron Syst, 2013, 49: 1263–1275

    Article  Google Scholar 

  15. 15

    Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Contr Theory Appl, 2012, 6: 487–497

    MathSciNet  Article  Google Scholar 

  16. 16

    Sun H F, Yang Z L, Zeng J P. New tracking-control strategy for airbreathing hypersonic vehicles. J Guid Control Dyn, 2013, 36: 846–859

    Article  Google Scholar 

  17. 17

    Huang H, Zhang Z. Characteristic model-based H2/H1 robust adaptive control during the re-entry of hypersonic cruise vehicles. Sci China Inf Sci, 2014, 58: 1–21

    Google Scholar 

  18. 18

    Su X F, Jia Y M. Constrained adaptive tracking and command shaped vibration control of flexible hypersonic vehicles. IET Contr Theory Appl, 2015, 9: 1857–1868

    MathSciNet  Article  Google Scholar 

  19. 19

    Zhi Y, Yang Y. Discrete control of longitudinal dynamics for hypersonic flight vehicle using neural networks. Sci China Inf Sci, 2015, 58: 1–10

    MathSciNet  Article  Google Scholar 

  20. 20

    Pu Z Q, Yuan R Y, Tan X M, et al. Active robust control of uncertainty and flexibility suppression for air-breathing hypersonic vehicles. Aerosp Sci Tech, 2015, 42: 429–441

    Article  Google Scholar 

  21. 21

    Geng J, Sheng Y Z, Liu X D. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system. Chin J Aeronaut, 2014, 27: 964–976

    Article  Google Scholar 

  22. 22

    Cai G H, Song J M, Chen X X. Command tracking control system design and evaluation for hypersonic reentry vehicles driven by a reaction control system. J Aerosp Eng, 2015, 28: 04014115

    Article  Google Scholar 

  23. 23

    Cai G, Song J, Chen X. Control system design for hypersonic reentry vehicle driven by aerosurfaces and reaction control system. P I Mech Eng G-J Aer, 2014, 229: 1575–1587

    Article  Google Scholar 

  24. 24

    Cen Z, Smith T, Stewart P, et al. Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion. P I Mech Eng G-J Aer, 2014, 229: 1057–1075

    Article  Google Scholar 

  25. 25

    Wang H L, Qin G Z, Wang Q Y, et al. Tracking control for a hypersonic air-breathing vehicle with thrust vectoring nozzles (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 415–423

    Article  Google Scholar 

  26. 26

    Poderico M, Morani G, Sollazzo A, et al. Fault-tolerant control laws against sensors failures for hypersonic flight. In: Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, 2012. AIAA 2012-5967

    Google Scholar 

  27. 27

    Hellmundt F, Wildschek A, Maier R, et al. Comparison of L1 adaptive augmentation strategies for a differential PI baseline controller on a longitudinal F16 aircraft model. In: Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2015. 99–118

    Google Scholar 

  28. 28

    Hovakimyan N, Cao C. L1 Adaptive Control Theory: Guaranteed Robustness With Fast Adaptation. Philadelphia: Society for Industrial and Applied Mathematics, 2010

    Google Scholar 

  29. 29

    Lei Y, Cao C, Cliff E, et al. Design of an L1 adaptive controller for air-breathing hypersonic vehicle model in the presence of unmodeled dynamics. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, 2007. AIAA 2007-6527

    Google Scholar 

  30. 30

    Prime Z, Doolan C, Cazzolato B. Longitudinal L1 Adaptive control of a hypersonic re-entry experiment. In: Proceedings of the 15th Australian International Aerospace Congress (AIAC15), Melbourne, 2013. 717–726

    Google Scholar 

  31. 31

    Banerjee S, Wang Z, Baur B, et al. L1 Adaptive control augmentation for the longitudinal dynamics of a hypersonic glider. J Guid Control Dyn, 2015, 39: 275–291

    Article  Google Scholar 

  32. 32

    Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dyn, 2000, 23: 577–585

    Article  Google Scholar 

  33. 33

    Tony A, Zhu J, Michael B, et al. Flight control of hypersonic scramjet vehicles using a differential algebraic approach. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006. AIAA 2006-6559

    Google Scholar 

  34. 34

    Xu B, Shi Z K, Yang C G, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn, 2013, 73: 1849–1861

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Banerjee S, Creagh M A, Boyce R R. L1 adaptive control augmentation configuration for a hypersonic glider in the presence of uncertainties. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, National Harbor, Maryland, 2014. AIAA 2014-0453

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qi Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wan, J. & Ai, J. L 1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy. Sci. China Inf. Sci. 60, 032203 (2017). https://doi.org/10.1007/s11432-016-0169-8

Download citation


  • hypersonic flight control
  • L 1 adaptive control
  • thrust vectoring
  • control allocation
  • parametric uncertainty
  • 032203


  • 高超音速飞行控制
  • L 1自适应控制
  • 矢量推力
  • 控制分配
  • 参数不确定性