Qubit-wise teleportation and its application in public-key secret communication

An Erratum to this article was published on 30 December 2016

Abstract

We propose a quantum public-key encryption (QPKE) protocol for an unknown multi-qubit state based on qubit-wise teleportation. The private-key is a computational Boolean function, whereas the public-key is a pair of a random bit string and a quantum state. A private-key corresponds to an exponential number of public-keys. Security analysis showed that the proposed protocol has information-theoretic security from attacks for the private-key and the encryption. A multi-partite quantum secret state sharing protocol is presented based on the proposed multi-qubit-oriented QPKE protocol. Such secret state sharing protocol is information-theoretically secure.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors”Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  Google Scholar 

  2. 2

    Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894

    Article  MATH  MathSciNet  Google Scholar 

  3. 3

    Huelga S F, Vaccaro J A, Chefles A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A, 2001, 63: 042303

    Article  MATH  Google Scholar 

  4. 4

    Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318

    Article  Google Scholar 

  5. 5

    Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518: 516–519

    Article  Google Scholar 

  6. 6

    Li T C, Yin Z Q. Quantum superpositon, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull, 2016, 61: 163–171

    Article  Google Scholar 

  7. 7

    Uhlmann A. Anti-(conjugate) linearity. Sci China-Phys Mech Astron, 2016, 59: 630301

    Article  Google Scholar 

  8. 8

    Yan F L, Yang L G. Ecomomical teleprotation of multiparticle quantum state. Nuovo Cimento Soc Ital Fis B, 2003, 118: 79–82

    Google Scholar 

  9. 9

    Zheng Y Z, Gu Y J, Wu G C, et al. Teleportation of a multiqubit state by an entangled qubit channel. Chinese Phys, 2003, 12: 1070–1075

    Article  Google Scholar 

  10. 10

    Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435

    Article  Google Scholar 

  11. 11

    Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59

    Article  MATH  Google Scholar 

  12. 12

    Zhang Z J, Liu Y M, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun Theory Phys, 2005, 44: 847

    Article  Google Scholar 

  13. 13

    Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys A, 2004, 70: 022329

    Google Scholar 

  14. 14

    Jie Y. Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol. Chinese Phys, 2005, 14: 2149–2152

    Article  Google Scholar 

  15. 15

    Wu Y L, Li S J, Ge W, et al. Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci Bull, 2016, 61: 302–306

    Article  Google Scholar 

  16. 16

    Cao D Y, Liu B H, Wang Z, et al. Multiuser-to-multiuser entanglement distribution based on 1550 nm polarizationentangled photons. Sci Bull, 2015, 60: 1128–1132

    Article  Google Scholar 

  17. 17

    René H, Markus G, Stenfan N, et al. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull, 2015, 60: 96–100

    Article  Google Scholar 

  18. 18

    Li F, Bao W, Fu X. A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm. Chinese Sci Bull, 2014, 59: 2552–2557

    Article  Google Scholar 

  19. 19

    Grover L K. Quantum mechanics helps in searching for a needle in haystack. Phys Rev Lett, 1997, 79: 325–328

    Article  Google Scholar 

  20. 20

    Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484–1509

    Article  MATH  MathSciNet  Google Scholar 

  21. 21

    Wu W Q, Zhang H G, Wang H Z, et al. A public key cryptosystem based on data complexity under quantum environment. Sci China Inf Sci, 2015, 58: 110102

    MathSciNet  Google Scholar 

  22. 22

    Okamoto T, Tanaka K, Uchiyama S. Quantum public-key cryptosystems. In: Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology. London: Springer-Verlag, 2000. 147–165

    Google Scholar 

  23. 23

    Gottesman D. Quantum public key cryptography with information-theoretic security. In: Proceedings of Workshop on Classical and Quantum Information Security, California, 2005. 15–18

    Google Scholar 

  24. 24

    Kawachi A, Koshiba T, Nishimura H, et al. Computational indistinguishability between quantum states and its cryptographic application. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2005. 268–284

    Google Scholar 

  25. 25

    Li Y. Quantum public-key cryptosystem based on classical NP-complete problem. arXiv:quant-ph/0310076

  26. 26

    Fujita H. Quantum McEliece public-key cryptosystem. Quantum Inf Comput, 2012, 12: 181–202

    MATH  MathSciNet  Google Scholar 

  27. 27

    Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. Phys Lett A, 2006, 354: 190–195

    Article  MATH  MathSciNet  Google Scholar 

  28. 28

    Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829

    Article  MathSciNet  Google Scholar 

  29. 29

    Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162

    Article  Google Scholar 

  30. 30

    Deng F G, Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2005, 340: 43–50

    Article  MATH  Google Scholar 

  31. 31

    Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  Google Scholar 

  32. 32

    Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 042320

    Article  Google Scholar 

  33. 33

    Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648

    Article  Google Scholar 

  34. 34

    Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

    Article  Google Scholar 

  35. 35

    Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308–1315

    Article  MATH  Google Scholar 

  36. 36

    Yang Y G, Wen Q Y. Circular threshold quantum secret sharing. Chinese Phys B, 2008, 17: 419

    Article  Google Scholar 

  37. 37

    Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  Google Scholar 

  38. 38

    Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  Google Scholar 

  39. 39

    Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 52319

    Article  Google Scholar 

  40. 40

    Hoffmann H, Bostroem K, Felbinger T. Comment on Secure direct communication with a quantum one-time pad. Phys Rev A, 2005, 72: 16301

    Article  Google Scholar 

  41. 41

    Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  Google Scholar 

  42. 42

    Yang L, Yang B Y, Xiang C. Quantum public-key encryption schemes based on conjugate coding. arXiv:1112.0421

  43. 43

    Liang M, Yang L. Public-key encryption and authentication of quantum information. Sci China Ser G-Phys Mech Astron, 2012, 55: 1618–1629

    Article  Google Scholar 

  44. 44

    Yang C P, Guo G C. Multiparticle generalization of teleportation. Chinese Phys Lett, 2000, 17: 162

    Article  Google Scholar 

  45. 45

    Ikram M, Zhu S Y, Zubairy M S. Quantum teleportation of an entangled state. Phys Rev A, 2000, 62: 022307

    Article  MathSciNet  Google Scholar 

  46. 46

    Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318

    Article  Google Scholar 

  47. 47

    Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303

    Article  Google Scholar 

  48. 48

    Yang L, Xiang C, Li B. Qubit-string-based bit commitment protocols with physical security. arXiv:1011.5099

  49. 49

    Boykin P O, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317

    Article  Google Scholar 

  50. 50

    Boykin P O. Information security and quantum mechanics: security of quantum protocols. Dissertation for Ph.D. Degree. Los Angeles: University of California, 2002

    Google Scholar 

  51. 51

    Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: Proceedings of IEEE 54th Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 2000. 547

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61173157, 61672517).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11432-016-0893-y.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Yang, L. Qubit-wise teleportation and its application in public-key secret communication. Sci. China Inf. Sci. 60, 032501 (2017). https://doi.org/10.1007/s11432-016-0152-4

Download citation

Keywords

  • public-key encryption
  • quantum information
  • quantum teleportation
  • quantum cryptography
  • quantum secret sharing
  • 032501