Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Qubit-wise teleportation and its application in public-key secret communication

  • 94 Accesses

  • 2 Citations


We propose a quantum public-key encryption (QPKE) protocol for an unknown multi-qubit state based on qubit-wise teleportation. The private-key is a computational Boolean function, whereas the public-key is a pair of a random bit string and a quantum state. A private-key corresponds to an exponential number of public-keys. Security analysis showed that the proposed protocol has information-theoretic security from attacks for the private-key and the encryption. A multi-partite quantum secret state sharing protocol is presented based on the proposed multi-qubit-oriented QPKE protocol. Such secret state sharing protocol is information-theoretically secure.

This is a preview of subscription content, log in to check access.


  1. 1

    Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors”Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

  2. 2

    Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894

  3. 3

    Huelga S F, Vaccaro J A, Chefles A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A, 2001, 63: 042303

  4. 4

    Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318

  5. 5

    Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518: 516–519

  6. 6

    Li T C, Yin Z Q. Quantum superpositon, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull, 2016, 61: 163–171

  7. 7

    Uhlmann A. Anti-(conjugate) linearity. Sci China-Phys Mech Astron, 2016, 59: 630301

  8. 8

    Yan F L, Yang L G. Ecomomical teleprotation of multiparticle quantum state. Nuovo Cimento Soc Ital Fis B, 2003, 118: 79–82

  9. 9

    Zheng Y Z, Gu Y J, Wu G C, et al. Teleportation of a multiqubit state by an entangled qubit channel. Chinese Phys, 2003, 12: 1070–1075

  10. 10

    Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435

  11. 11

    Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59

  12. 12

    Zhang Z J, Liu Y M, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun Theory Phys, 2005, 44: 847

  13. 13

    Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys A, 2004, 70: 022329

  14. 14

    Jie Y. Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol. Chinese Phys, 2005, 14: 2149–2152

  15. 15

    Wu Y L, Li S J, Ge W, et al. Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci Bull, 2016, 61: 302–306

  16. 16

    Cao D Y, Liu B H, Wang Z, et al. Multiuser-to-multiuser entanglement distribution based on 1550 nm polarizationentangled photons. Sci Bull, 2015, 60: 1128–1132

  17. 17

    René H, Markus G, Stenfan N, et al. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull, 2015, 60: 96–100

  18. 18

    Li F, Bao W, Fu X. A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm. Chinese Sci Bull, 2014, 59: 2552–2557

  19. 19

    Grover L K. Quantum mechanics helps in searching for a needle in haystack. Phys Rev Lett, 1997, 79: 325–328

  20. 20

    Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484–1509

  21. 21

    Wu W Q, Zhang H G, Wang H Z, et al. A public key cryptosystem based on data complexity under quantum environment. Sci China Inf Sci, 2015, 58: 110102

  22. 22

    Okamoto T, Tanaka K, Uchiyama S. Quantum public-key cryptosystems. In: Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology. London: Springer-Verlag, 2000. 147–165

  23. 23

    Gottesman D. Quantum public key cryptography with information-theoretic security. In: Proceedings of Workshop on Classical and Quantum Information Security, California, 2005. 15–18

  24. 24

    Kawachi A, Koshiba T, Nishimura H, et al. Computational indistinguishability between quantum states and its cryptographic application. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2005. 268–284

  25. 25

    Li Y. Quantum public-key cryptosystem based on classical NP-complete problem. arXiv:quant-ph/0310076

  26. 26

    Fujita H. Quantum McEliece public-key cryptosystem. Quantum Inf Comput, 2012, 12: 181–202

  27. 27

    Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. Phys Lett A, 2006, 354: 190–195

  28. 28

    Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829

  29. 29

    Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162

  30. 30

    Deng F G, Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2005, 340: 43–50

  31. 31

    Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

  32. 32

    Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 042320

  33. 33

    Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648

  34. 34

    Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

  35. 35

    Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308–1315

  36. 36

    Yang Y G, Wen Q Y. Circular threshold quantum secret sharing. Chinese Phys B, 2008, 17: 419

  37. 37

    Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

  38. 38

    Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

  39. 39

    Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 52319

  40. 40

    Hoffmann H, Bostroem K, Felbinger T. Comment on Secure direct communication with a quantum one-time pad. Phys Rev A, 2005, 72: 16301

  41. 41

    Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

  42. 42

    Yang L, Yang B Y, Xiang C. Quantum public-key encryption schemes based on conjugate coding. arXiv:1112.0421

  43. 43

    Liang M, Yang L. Public-key encryption and authentication of quantum information. Sci China Ser G-Phys Mech Astron, 2012, 55: 1618–1629

  44. 44

    Yang C P, Guo G C. Multiparticle generalization of teleportation. Chinese Phys Lett, 2000, 17: 162

  45. 45

    Ikram M, Zhu S Y, Zubairy M S. Quantum teleportation of an entangled state. Phys Rev A, 2000, 62: 022307

  46. 46

    Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318

  47. 47

    Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303

  48. 48

    Yang L, Xiang C, Li B. Qubit-string-based bit commitment protocols with physical security. arXiv:1011.5099

  49. 49

    Boykin P O, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317

  50. 50

    Boykin P O. Information security and quantum mechanics: security of quantum protocols. Dissertation for Ph.D. Degree. Los Angeles: University of California, 2002

  51. 51

    Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: Proceedings of IEEE 54th Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 2000. 547

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61173157, 61672517).

Author information

Correspondence to Li Yang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11432-016-0893-y.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Yang, L. Qubit-wise teleportation and its application in public-key secret communication. Sci. China Inf. Sci. 60, 032501 (2017). https://doi.org/10.1007/s11432-016-0152-4

Download citation


  • public-key encryption
  • quantum information
  • quantum teleportation
  • quantum cryptography
  • quantum secret sharing
  • 032501