Joint user grouping and resource allocation for uplink virtual MIMO systems



MIMO has become a core technology of 5G network to largely improve system throughput. Due to the cost and size of the user equipment (UE), the application of MIMO uplink is limited by the difficulty in practical implementation at the user side. Virtual MIMO has been widely investigated to solve this problem for wireless uplink systems. However, virtual MIMO transmission leads to performance degradation due to the multiuser interference. To obtain good trade-off between the system throughput and transmission performance, we investigate joint user grouping and resource allocation under the consideration of system throughput and average mean squared error (MSE) performance in SC-FDMA uplink systems. Based on linear MIMO detection, we first develop MSE-oriented user grouping criteria for evaluation of transmission performance, then establish dynamic user grouping and optimal resource allocation problems for hard and elastic average MSE constraints. The proposed joint resource allocation algorithm is evaluated in SC-FDMA uplink scenarios and the results show that it achieves maximum system throughput with average MSE guaranteed for the hard MSE constraint algorithms and the alterable trade-off between system throughput and average MSE for the elastic MSE constraint algorithms.


  1. 1


  2. 2


  3. 3


This is a preview of subscription content, access via your institution.


  1. 1

    Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications-a key to gigabit wireless. Proc IEEE, 2004, 92: 198–218

    Article  Google Scholar 

  2. 2

    Nortel. UL virtual MIMO transmission for E-UTRA. In: 3GPP TSG RAN WG Meeting #42, R1-051162, 2005. 1–10

    Google Scholar 

  3. 3

    Sesia S, Toufik I, Baker M. LTE, the UMTS Long Term Evolution: From Theory to Practice. New York: John Wiley & Sons, 2009

    Book  Google Scholar 

  4. 4

    Motorola. Link simulation results for uplink virtual MIMO. In: 3GPP TSG RAN WG Meeting #54, R1-062074, 2006. 1–3

    Google Scholar 

  5. 5

    Wang C X, Hong X M, Ge X H, et al. Cooperative MIMO channel models: a survey. IEEE Commun Mag, 2010, 48: 80–87

    Article  Google Scholar 

  6. 6

    Zhao H T, Emiliano G P, Wei J B, et al. Capacity and resource allocation of cooperative MIMO in ad hoc networks. Phys Commun, 2011, 4: 98–110

    Article  Google Scholar 

  7. 7

    Zhao H Z, Ma S, Liu F W, et al. A suboptimal multiuser pairing algorithm with low complexity for virtual MIMO systems. IEEE Trans Veh Technol, 2014, 63: 3481–3486

    Article  Google Scholar 

  8. 8

    Goldsmith A, Jafar S A, Jindal N, et al. Capacity limits of MIMO channels. IEEE J Sel Area Commun, 2003, 21: 684–702

    Article  Google Scholar 

  9. 9

    Qualcomm Europe. UL system analysis with SDMA. In: 3GPP TSG RAN WG Meeting #45, R1-062052, 2006. 1–8

    Google Scholar 

  10. 10

    Fan J C, Li G Y, Yin Q Y, et al. Joint user pairing and resource allocation for LTE uplink transmission. IEEE Trans Wirel Commun, 2012, 11: 2838–2847

    Google Scholar 

  11. 11

    Fan B, Wang W B, Lin Y C, et al. Spatial multi-user pairing for uplink virtual-MIMO systems with linear receiver. In: Proceedings of 2009 IEEE Wireless Communications & Networking Conference, Budapest, 2009. 1807–1811

    Google Scholar 

  12. 12

    Chen X, Hu H L, Wang H F, et al. Double proportional fair user pairing algorithm for uplink virtual MIMO systems. IEEE Trans Wirel Commun, 2008, 7: 2425–2429

    Article  Google Scholar 

  13. 13

    Liang J, Liang Q L. Channel selection in virtual MIMO wireless sensor networks. IEEE Trans Veh Technol, 2009, 58: 2249–2257

    Article  Google Scholar 

  14. 14

    Nortel. UL virtual MIMO system level performance evaluation for E-UTRA. In: 3GPP TSG RAN1 WG1 Meeting #42, R1-051422, 2005. 1–6

    Google Scholar 

  15. 15

    Dhakal S, Joonbeom K. Statistical analysis of user-pairing algorithms in virtual MIMO systems. In: Proceedings of Wireless Telecommunications Symposium, Tampa, 2010. 1–5

    Google Scholar 

  16. 16

    Ruder M A, Ding D, Dang U L, et al. Joint user grouping and frequency allocation for multiuser SC-FDMA transmission. Phys Commun, 2013, 8: 91–103

    Article  Google Scholar 

  17. 17

    Li Y, Wang W B, Zhang X, et al. Combined proportional fair and maximum rate scheduling for virtual MIMO. In: Proceedings of 2008 IEEE 68th Vehicular Technology Conference, Calgary, 2008. 1–4

    Google Scholar 

  18. 18

    Wang X T, Wang W B, Zhao Z Y, et al. Fairness adjustable grouping multiuser scheduling for MIMO MAC with MMSE-SIC receiver. In: Proceedings of 2008 IEEE Globecom Workshops, New Orleans, 2008. 1–5

    Google Scholar 

  19. 19

    Karimi O B, Toutounchian M A, Liu J C, et al. Lightweight user grouping with flexible degrees of freedom in virtual MIMO. IEEE J Sel Area Commun, 2013, 31: 2004–2012

    Article  Google Scholar 

  20. 20

    Myung H G, Lim J S, Goodman D J. Single carrier FDMA for uplink wireless transmission. IEEE Trans Veh Technol, 2006, 1: 30–38

    Article  Google Scholar 

  21. 21

    Wong I C, Oteri O, Mc Coy W. Optimal resource allocation in uplink SC-FDMA systems. IEEE Trans Wirel Commun, 2009, 8: 2161–2165

    Article  Google Scholar 

  22. 22

    Prasad N, Zhang H H, Zhu H, et al. Multi-user MIMO scheduling in the fourth generation cellular uplink. IEEE Trans Wirel Commun, 2013, 12: 4272–4285

    Article  Google Scholar 

  23. 23

    Kuhn H. The Hungarian method for the assignment problem. Nav Res Log, 1955, 1: 83–97

    MathSciNet  Article  MATH  Google Scholar 

  24. 24

    Kuhn H. Variants of the Hungarian method for the assignment problem. Nav Res Log, 1956, 3: 253–258

    Article  Google Scholar 

  25. 25

    Rojo O. Further bounds for the smallest singular value and the spectral condition number. Comput Math Appl, 1999, 38: 215–228

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Yu X Y, Gen M S. Introduction to Evolutionary Algorithms. London: Springer-Verlag, 2010. 193–259

    MATH  Google Scholar 

  27. 27

    Wei G H, Wang F. Linear Programming. Beijing: Higher Education Press, 1989. 205–225

    Google Scholar 

  28. 28

    International Telecommunication Union. Guidelines for evaluation of radio transmission technologies for IMT-2000. In: Recommendation ITU-RM, 1225, 1997. 1–60

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xiaofeng Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Yang, K., Li, W. et al. Joint user grouping and resource allocation for uplink virtual MIMO systems. Sci. China Inf. Sci. 59, 1–14 (2016).

Download citation


  • virtual MIMO
  • user grouping
  • average MSE
  • system throughput
  • resource allocation


  • 022304


  • 虚拟MIMO
  • 用户配对
  • 平均MSE
  • 系统吞吐量
  • 资源分配