Design of evacuation strategies with crowd density feedback



A second-order stochastic model describing a large scale crowd is formulated, and an efficient evacuation strategy for agents in complex surroundings is proposed and solved numerically. The method consists in reshaping the crowd contour by making use of the crowd density feedback that is commonly available from geolocation technologies, and Kantorovich distance is used to transport the current shape into the desired one. The availability of the crowd density enables to solve the otherwise challenging forward-backward problem. Using this approach, we demonstrate via numerical results that the crowd migrates through the complex environment as designed.



This is a preview of subscription content, access via your institution.


  1. 1

    Parrish J, Hammer W. Animal Groups in Three Dimensions. Cambridge: Cambridge University Press, 1997

    Book  Google Scholar 

  2. 2

    Balch T, Arkin R C. Behavior-based formation control for multi-robot teams. IEEE Trans Robot Automat, 1998, 14: 926–939

    Article  Google Scholar 

  3. 3

    Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407: 487–490

    Article  Google Scholar 

  4. 4

    Wang J, Zhang L, Shi Q, et al. Modeling and simulating for congestion pedestrian evacuation with panic. Phys A, 2015, 428: 396–409

    Article  Google Scholar 

  5. 5

    Twarogowska M, Goatin P, Duvigneau R. Macroscopic modeling and simulations of room evacuation. Appl Math Model, 2014, 38: 5781–5795

    MathSciNet  Article  Google Scholar 

  6. 6

    Zheng Y, Jia B, Li X, et al. Evacuation dynamics with fire spreading based on cellular automaton. Phys A, 2011, 390: 3147–3156

    Article  Google Scholar 

  7. 7

    Ajzen I. The theory of planned behavior. Organ Behav Hum Decision Process, 1991, 50: 179–211

    Article  Google Scholar 

  8. 8

    Sime J D. Crowd psychology and engineering. Saf Sci, 1995, 21: 1–14

    Article  Google Scholar 

  9. 9

    Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Comput Graph, 1987, 21: 25–34

    Article  Google Scholar 

  10. 10

    Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E, 1995, 51: 4282–4286

    Article  Google Scholar 

  11. 11

    Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Automat Contr, 2003, 48: 692–697

    MathSciNet  Article  Google Scholar 

  12. 12

    Yang Y, Dimarogonas D V, Hu X. Opinion consensus of modified HegselmannKrause models. Automatica, 2014, 50: 622–627

    MathSciNet  Article  Google Scholar 

  13. 13

    Huang M, Caines P E, Malhame R P. Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized-Nash equilibrium. IEEE Trans Automat Contr, 2007, 52: 1560–1571

    MathSciNet  Article  Google Scholar 

  14. 14

    Lasry J, Lions P. Mean field games. Jpn J Math, 2007, 2: 229–260

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Voorhees P W. The theory of Ostwald ripening. J Statist Phys, 1985, 38: 231–252

    Article  Google Scholar 

  16. 16

    Lachapelle A, Wolfram M. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res Part B, 2011, 45: 1572–1589

    Article  Google Scholar 

  17. 17

    Yang Y, Dimarogonas D V, Hu X. Shaping up crowd of agents through controlling their statistical moments. arXiv: 1410.6355 [math.OC]

  18. 18

    Elad M, Milanfar R, Golub G H. Shape from moments—an estimation theory perspective. IEEE Trans Signal Process, 2004, 52: 1814–1829

    MathSciNet  Article  Google Scholar 

  19. 19

    Yu Y-C. A social interaction system based on cloud computing for mobile video telephony. Sci China Inf Sci, 2014, 57: 032102

    Google Scholar 

  20. 20

    Reif J H, Wang H. Social potential fields: a distributed behavioral control for autonomous robots. Robot Auton Syst, 1999, 27: 171–194

    Article  Google Scholar 

  21. 21

    Lin Y K, Cai G Q. Probability Structural Dynamic: Advanced Theory and Applications. New York: McGraw-Hill, 2004

    Google Scholar 

  22. 22

    Fleming W H, Soner H M. Controlled Markov Process and Viscosity Solutions. New Yourk: Springer, 2006

    MATH  Google Scholar 

  23. 23

    Yong J M, Zhou X Y. Stochastic Control, Hamiltonian Systems and HJB Equations. New York: Springer-Verlag, 1999

    MATH  Google Scholar 

  24. 24

    Qi L, Cai G Q, Xu W. Nonstationary response of nonlinear oscillators with optimal bounded control and broad0band noises. Probabilistic Eng Mech, 2014, 38: 35–41

    Article  Google Scholar 

  25. 25

    Kantorovich L. On the transflocation of masses. Manag Sci, 1958, 5: 1–4

    Article  Google Scholar 

  26. 26

    Werman M, Peleg S, Rosenfeld A. A distance metric for multi-dimensional histograms. Comput Vis Graph Image Process, 1985, 32: 328–336

    Article  MATH  Google Scholar 

  27. 27

    Kaijse T. Computing the Kantorovich distance for images. J Math Imaging Vision, 1998, 9: 173–191

    MathSciNet  Article  Google Scholar 

  28. 28

    Brandt J, Cabrelli C, Molter U. An algorithm for the computation of the Hutchinson distance. Inf Process Lett, 1991, 40: 113–117

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Deng Y, Du W. The Kantorovich metric in computer science: a brief survey. Electron Notes Theor Comput Sci, 2009, 253: 73–82

    Article  Google Scholar 

  30. 30

    Murty K. Linear and Combinatorial Programming. New York: Wiley, 1976

    MATH  Google Scholar 

  31. 31

    Gustavi T. Control and coordination of mobile multi-agent systems. Dissertation for the Doctoral Degree. Optimization and Systems Theory, Department of Mathematics, KTH, 2009

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Luyuan Qi or Xiaoming Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Hu, X. Design of evacuation strategies with crowd density feedback. Sci. China Inf. Sci. 59, 1–11 (2016).

Download citation


  • crowd dynamics
  • multi-agent system
  • stochastic differential equation
  • optimal control
  • congestion control
  • 010204


  • 大规模人群动力系统
  • 多自体系统
  • 随机微分方程模型
  • 最优控制
  • 拥塞控制