Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Design of evacuation strategies with crowd density feedback

基于人群概率密度的拥塞控制设计

Abstract

A second-order stochastic model describing a large scale crowd is formulated, and an efficient evacuation strategy for agents in complex surroundings is proposed and solved numerically. The method consists in reshaping the crowd contour by making use of the crowd density feedback that is commonly available from geolocation technologies, and Kantorovich distance is used to transport the current shape into the desired one. The availability of the crowd density enables to solve the otherwise challenging forward-backward problem. Using this approach, we demonstrate via numerical results that the crowd migrates through the complex environment as designed.

中文概要

本文提出了可以描述大规模人群运动的多自体模型,其中每个个体的运动模型由一个二阶随机微分方程来描述,个体之间通过吸引力-排斥力模型相互耦合。从控制人群形状的角度出发设计了在复杂环境中有效防止人群拥塞的反馈控制率。通过数值模拟验证了所提模型的合理性和控制率的有效性。不同于以往的研究,本文首次采用了统计概率密度信息来设计反馈控制率。通过Kantorovich距离比较当前概率密度和目标概率密度,并保证了人群形状的变化在个体移动距离总和的层面上是最优的。该方法有效避免了求解高维耦合Fokker-Planck方程所带来的困难,并且给mean-field模型的研究提供了新思路。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Parrish J, Hammer W. Animal Groups in Three Dimensions. Cambridge: Cambridge University Press, 1997

  2. 2

    Balch T, Arkin R C. Behavior-based formation control for multi-robot teams. IEEE Trans Robot Automat, 1998, 14: 926–939

  3. 3

    Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407: 487–490

  4. 4

    Wang J, Zhang L, Shi Q, et al. Modeling and simulating for congestion pedestrian evacuation with panic. Phys A, 2015, 428: 396–409

  5. 5

    Twarogowska M, Goatin P, Duvigneau R. Macroscopic modeling and simulations of room evacuation. Appl Math Model, 2014, 38: 5781–5795

  6. 6

    Zheng Y, Jia B, Li X, et al. Evacuation dynamics with fire spreading based on cellular automaton. Phys A, 2011, 390: 3147–3156

  7. 7

    Ajzen I. The theory of planned behavior. Organ Behav Hum Decision Process, 1991, 50: 179–211

  8. 8

    Sime J D. Crowd psychology and engineering. Saf Sci, 1995, 21: 1–14

  9. 9

    Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Comput Graph, 1987, 21: 25–34

  10. 10

    Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E, 1995, 51: 4282–4286

  11. 11

    Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Automat Contr, 2003, 48: 692–697

  12. 12

    Yang Y, Dimarogonas D V, Hu X. Opinion consensus of modified HegselmannKrause models. Automatica, 2014, 50: 622–627

  13. 13

    Huang M, Caines P E, Malhame R P. Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized-Nash equilibrium. IEEE Trans Automat Contr, 2007, 52: 1560–1571

  14. 14

    Lasry J, Lions P. Mean field games. Jpn J Math, 2007, 2: 229–260

  15. 15

    Voorhees P W. The theory of Ostwald ripening. J Statist Phys, 1985, 38: 231–252

  16. 16

    Lachapelle A, Wolfram M. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res Part B, 2011, 45: 1572–1589

  17. 17

    Yang Y, Dimarogonas D V, Hu X. Shaping up crowd of agents through controlling their statistical moments. arXiv: 1410.6355 [math.OC]

  18. 18

    Elad M, Milanfar R, Golub G H. Shape from moments—an estimation theory perspective. IEEE Trans Signal Process, 2004, 52: 1814–1829

  19. 19

    Yu Y-C. A social interaction system based on cloud computing for mobile video telephony. Sci China Inf Sci, 2014, 57: 032102

  20. 20

    Reif J H, Wang H. Social potential fields: a distributed behavioral control for autonomous robots. Robot Auton Syst, 1999, 27: 171–194

  21. 21

    Lin Y K, Cai G Q. Probability Structural Dynamic: Advanced Theory and Applications. New York: McGraw-Hill, 2004

  22. 22

    Fleming W H, Soner H M. Controlled Markov Process and Viscosity Solutions. New Yourk: Springer, 2006

  23. 23

    Yong J M, Zhou X Y. Stochastic Control, Hamiltonian Systems and HJB Equations. New York: Springer-Verlag, 1999

  24. 24

    Qi L, Cai G Q, Xu W. Nonstationary response of nonlinear oscillators with optimal bounded control and broad0band noises. Probabilistic Eng Mech, 2014, 38: 35–41

  25. 25

    Kantorovich L. On the transflocation of masses. Manag Sci, 1958, 5: 1–4

  26. 26

    Werman M, Peleg S, Rosenfeld A. A distance metric for multi-dimensional histograms. Comput Vis Graph Image Process, 1985, 32: 328–336

  27. 27

    Kaijse T. Computing the Kantorovich distance for images. J Math Imaging Vision, 1998, 9: 173–191

  28. 28

    Brandt J, Cabrelli C, Molter U. An algorithm for the computation of the Hutchinson distance. Inf Process Lett, 1991, 40: 113–117

  29. 29

    Deng Y, Du W. The Kantorovich metric in computer science: a brief survey. Electron Notes Theor Comput Sci, 2009, 253: 73–82

  30. 30

    Murty K. Linear and Combinatorial Programming. New York: Wiley, 1976

  31. 31

    Gustavi T. Control and coordination of mobile multi-agent systems. Dissertation for the Doctoral Degree. Optimization and Systems Theory, Department of Mathematics, KTH, 2009

Download references

Author information

Correspondence to Luyuan Qi or Xiaoming Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Hu, X. Design of evacuation strategies with crowd density feedback. Sci. China Inf. Sci. 59, 1–11 (2016). https://doi.org/10.1007/s11432-015-5508-2

Download citation

Keywords

  • crowd dynamics
  • multi-agent system
  • stochastic differential equation
  • optimal control
  • congestion control
  • 010204

关键词

  • 大规模人群动力系统
  • 多自体系统
  • 随机微分方程模型
  • 最优控制
  • 拥塞控制