Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control



This paper addresses the formation control problem of multiple Euler-Lagrange systems with model uncertainties in the environment containing obstacles. Utilizing the null-space-based (NSB) behavioral control architecture, the proposed problem can be decomposed into elementary missions (behaviors) with different priorities and implemented by each individual system. A class of novel coordination control algorithms is constructed and utilized to achieve accurate formation task while avoiding obstacles and guaranteeing the model uncertainty rejection objective. By using sliding mode control and Lyapunov theory, the formation performance in closed-loop multi-agent systems is proven achievable if the state-dependent gain of the obstacle avoidance mission is appropriately designed. Finally, simulation examples demonstrate the effectiveness of the algorithms.



This is a preview of subscription content, access via your institution.


  1. 1

    Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London: Springer, 2008

    Book  MATH  Google Scholar 

  2. 2

    Wang L, Jiang F C, Xie G M, et al. Controllability of multi-agent systems based on agreement protocols. Sci China Ser-F: Inf Sci, 2009, 52: 2074–2088

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Wang Q, Wang Y Z. Cluster synchronization of a class of multi-agent systems with a bipartite graph topology. Sci China Inf Sci, 2014, 57: 012203

    MathSciNet  MATH  Google Scholar 

  4. 4

    Min H, Wang S, Sun F, et al. Decentralized adaptive attitude synchronization of spacecraft formation. Syst Control Lett, 2012, 61: 238–246

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Wang H. Flocking of networked uncertain Euler-Lagrange systems on directed graphs. Automatica, 2013, 49: 2774–2779

    MathSciNet  Article  Google Scholar 

  6. 6

    Mei J, Ren W, Chen J, et al. Distributed adaptive coordination for multiple Lagrangian systems under a directed graph without using neighbors’ velocity information. Automatica, 2013, 49: 1723–1731

    MathSciNet  Article  Google Scholar 

  7. 7

    Nuño E, Ortega R, Jayawardhana B, et al. Coordination of multi-agent Euler-Lagrange systems via energy-shaping: networking improves robustness. Automatica, 2013, 49: 3065–3071

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Chen F, Feng G, Liu L, et al. Distributed average tracking of networked Euler-Lagrange systems. IEEE Trans Autom Control, 2015, 60: 547–552

    MathSciNet  Article  Google Scholar 

  9. 9

    Meng Z, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46: 2092–2099

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. Int J Control, 2009, 82: 2137–2149

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Sandell N R, Varaiya P, Athans M, et al. Survey of decentralized control methods for large scale systems. IEEE Trans Autom Control, 1978, 23: 108–128

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom, 1998, 14: 926–939

    Article  Google Scholar 

  13. 13

    Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, 2001. 2968–2973

    Google Scholar 

  14. 14

    Feddema J T, Lewis C, Schoenwald D. Decentralized control of cooperative robotic vehicles: theory and application. IEEE Trans Robot Autom, 2002, 18: 852–864

    Article  Google Scholar 

  15. 15

    Belta C, Kumar V. Abstraction and control for groups of robots. IEEE Trans Robot, 2004, 20: 865–875

    Article  Google Scholar 

  16. 16

    Olfati-Saber R, Fax A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95: 215–233

    Article  Google Scholar 

  17. 17

    Chung S J, Slotine J J E. Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans Robot, 2009, 25: 686–700

    Article  Google Scholar 

  18. 18

    Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London: Springer-Verlag, 2009

    MATH  Google Scholar 

  19. 19

    Arrichiello F. Coordination control of multiple mobile robots. Dissertation of Doctoral Degree. Cassino: Universita Degli Studi Di Cassino, 2006

    Google Scholar 

  20. 20

    Antonelli G, Chiaverini S. Kinematic control of platoons of autonomous vehicles. IEEE Trans Robot, 2006, 22: 1285–1292

    Article  Google Scholar 

  21. 21

    Antonelli G, Arrichiello F, Chiaverini S. The null-space-based behavioral control for autonomous robotic systems. Intell Serv Robot, 2008, 1: 27–39

    Article  Google Scholar 

  22. 22

    Marino A, Parker L E, Antonelli G, et al. A decentralized architecture for multi-robot systems based on the nullspace- behavioral control with application to multi-robot border patrolling. J Intell Robot Syst, 2013, 71: 423–444

    Article  Google Scholar 

  23. 23

    Huang J, Fang H, Dou L, et al. An overview of distributed high-order multi-agent coordination. IEEE/CAA J Automat Sin, 2014, 1: 1–9

    Google Scholar 

  24. 24

    Cheng L, Hou Z G, Tan M. Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008. 2712–2717

    Google Scholar 

  25. 25

    Cheng L, Hou Z G, Tan M. Decentralized adaptive leader-follower control of multi-manipulator system with uncertain dynamics. In: Proceedings of 34th Annual Conference of IEEE In Industrial Electronics, Orlando, 2008. 1608–1613

    Google Scholar 

  26. 26

    Dong W, Farrell J. Cooperative control of multiple nonholonomic mobile agents. IEEE Trans Autom Control, 2008, 53: 1434–1448

    MathSciNet  Article  Google Scholar 

  27. 27

    Yang Q, Fang H, Mao Y, et al. Distributed tracking for networked Euler-Lagrange systems without velocity measurements. J Syst Eng Electron, 2014, 25: 671–680

    Article  Google Scholar 

  28. 28

    Stilwell D J, Bishop B E. Platoons of underwater vehicles. IEEE Control Syst Mag, 2000, 20: 45–52

    Article  Google Scholar 

  29. 29

    Olfati-Saber R, Murray R M. Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 15th IFAC World Congress, Barcelona, 2002. 346–352

    Google Scholar 

  30. 30

    Wang X, Yadav V, Balakrishnan S N. Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans Control Syst Technol, 2007, 15: 672–679

    Article  Google Scholar 

  31. 31

    Hou Z G, Cheng L, Tan M. Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans Syst Man Cybern Part B-Cybern, 2009, 39: 636–647

    Article  Google Scholar 

  32. 32

    Cheng L, Hou Z G, Tan M, et al. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans Neural Netw, 2010, 21: 1351–1358

    Article  Google Scholar 

  33. 33

    Zhou N, Xia Y, Lu K, et al. Decentralised finite-time attitude synchronisation and tracking control for rigid spacecraft. Int J Syst Sci, 2015, 46: 2493–2509

    MathSciNet  Article  MATH  Google Scholar 

  34. 34

    Zhou N, Xia Y, Wang M, et al. Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode. Int J Robust Nonlinear Control, 2015, 25: 1862–1876

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Zhou N, Xia Y. Coordination control design for formation reconfiguration of multiple spacecraft. IET Contr Theory Appl, 2015, 9: 2222–2231

    MathSciNet  Article  Google Scholar 

  36. 36

    Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41: 1957–1964

    MathSciNet  Article  MATH  Google Scholar 

  37. 37

    Kwon J W, Chwa D. Hierarchical formation control based on a vector field method for wheeled mobile robots. IEEE Trans Robot, 2012, 28: 1335–1345

    Article  Google Scholar 

  38. 38

    Ranjbar-Sahraei B, Shabaninia F, Nemati A, et al. A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems. IEEE Trans Ind Electron, 2012, 59: 3124–3134

    Article  Google Scholar 

  39. 39

    Kan Z, Dani A P, Shea J M, et al. Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller. IEEE Trans Autom Control, 2012, 57: 1827–1832

    MathSciNet  Article  Google Scholar 

  40. 40

    Fukushima H, Kon K, Matsuno F. Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans Robot, 2013, 29: 1308–1317

    Article  Google Scholar 

  41. 41

    Oh K K, Ahn H S. Formation control and network localization via orientation alignment. IEEE Trans Autom Control, 2014, 59: 540–545

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Minggang Gan or Jie Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gan, M., Huang, J. et al. Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control. Sci. China Inf. Sci. 59, 1–11 (2016).

Download citation


  • formation control
  • obstacle avoidance
  • Euler-Lagrange system
  • model uncertainty
  • behavioral control
  • 010202


  • 编队控制
  • 壁障
  • 欧拉-拉格朗日系统
  • 模型不确定
  • 行为控制