Imaging and structural feature decomposition of a complex target using multi-aspect polarimetric scattering

Abstract

Based on the Huynen parametric decomposition of target scattering matrix, the polarimetric ellipse parameters are transformed and applied to decomposition of scattering mechanisms of a complex target in VHR POL-SAR images (very high resolution, polarimetric synthetic aperture radar). Making use of multi-aspect (or circle-aspect) and wideband VHR POL-SAR images, scattering mechanisms of a volumetric target and its structural components are recognized over image pixels. Utilizing the layover features, the target height profile is also estimated from two-dimensional image. As example, polarimetric scattering data of some vehicles on ground, including multi-aspect simulated data and experimental measurements, are applied to validations of scattering mechanism decompositions and target structural feature recognition.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Rihaczek A W, Hershkowitz S J. Radar Resolution and Complex-Image Analysis. Norwood: Artech House, 1996

    Google Scholar 

  2. 2

    Lee J-S, Pottier E. Polarimetric Radar Imaging: From Basics to Applications. BocaRaton: CRC Press, 2009

    Google Scholar 

  3. 3

    Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 1997, 35: 68–78

    Article  Google Scholar 

  4. 4

    Xu J Y, Yang J, Peng Y N. A new approach to dual-band polarimetric radar remote sensing image classification. Sci China Ser F-Inf Sci, 2005, 48: 747–760

    Article  Google Scholar 

  5. 5

    Huynen J R. Phenomenological theory of radar targets. Dissertation for the Ph.D. Degree. Delft: University of Technology, 1970

    Google Scholar 

  6. 6

    Huynen J R. Phenomenological Theory of Radar Targets, Electromagnetic Scattering. New York: Academic Press, 1978

    Google Scholar 

  7. 7

    Krogager E. New decomposition of the radar target scattering matrix. Electron Lett, 1990, 26: 1525–1527

    Article  Google Scholar 

  8. 8

    Cameron W L, Leung L K. Feature motivated polarization scattering matrix decomposition. In: Proceedings of IEEE International Radar Conference, Arlington, 1990. 549–557

    Google Scholar 

  9. 9

    Cameron W L, Youssef N N, Leung L K. Simulated polarimetric signatures of primitive geometrical shapes. IEEE Trans Geosci Remote Sens, 1996, 34: 793–803

    Article  Google Scholar 

  10. 10

    Knott E F, Shaeffer J F, Tuley M T. Radar Cross Sections. 2nd ed. Raleigh: SciTech Publishing, 2004

    Google Scholar 

  11. 11

    Keller J B. Geometrical theory of diffraction. J Opt Soc America, 1962, 52: 116–130

    MathSciNet  Article  Google Scholar 

  12. 12

    Potter L C, Moses R L. Attributed scattering centers for SAR ATR. IEEE Trans Image Process, 1997, 6: 79–91

    Article  Google Scholar 

  13. 13

    Gerry M J, Potter L C, Gupta I J, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans Anten Propaga, 1999: 47, 1179–1188

    Article  Google Scholar 

  14. 14

    Richards J A, Willsky A S, Fisher J W. Expectation-maximization approach to target model generation from multiple synthetic aperture radar images. Optical Eng, 2002, 41: 150–166

    Article  Google Scholar 

  15. 15

    Jackson J A, Moses R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIII, 2006, 6237

    Google Scholar 

  16. 16

    Jackson J A, Rigling B D, Moses R L. Canonical scattering feature models for 3D and bistatic SAR. IEEE Trans Aeros Electr Syst, 2010, 46: 525–541

    Article  Google Scholar 

  17. 17

    Jin Y-Q, Xu F. Polarimetric Scattering and SAR Information Retrieval. Hoboken: Wiley-IEEE Press, 2013

    Google Scholar 

  18. 18

    Baird C, Kersey W T, Giles R, et al. Classification of targets using optimized ISAR Euler imagery. Proc SPIE Radar Sensor Technology X, 2006, 6210: 11

    Google Scholar 

  19. 19

    Baird C, Giles R, Nixon W. Development and assessment of a complete ATR algorithm based on ISAR Euler imagery. Proc SPIE Radar Sensor Technology XI, 2007, 6547

    Google Scholar 

  20. 20

    Dallmann T, Heberling D. Discrimination of scattering mechanisms via polarimetric rcs imaging. IEEE Anten Propaga Maga, 2014, 56: 154–165

    Article  Google Scholar 

  21. 21

    Ertin E, Austin C D, Sharma S, et al. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 12

    Google Scholar 

  22. 22

    Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: a Signal Processing Approach. Boston: Kluwer Academic Publishers, 1996

    Google Scholar 

  23. 23

    Knaell K, Cardillo G. Radar tomography for the generation of three-dimensional images. IEEE Proc Radar Sonar Navi, 1995, 142: 54–60

    Article  Google Scholar 

  24. 24

    Gorham L A, Moore L J. SAR image formation toolbox for MATLAB. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 223–263

    Google Scholar 

  25. 25

    Jin Y Q, Lou L. Terrain topographic inversion using single-pass polarimetric SAR image data. Sci China Ser F-Inf Sci, 2004, 47: 490–500

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Wang B, Wang Y P, Hong W, et al. Studies on MB-SAR 3D imaging algorithm using Yule-Walker method. Sci China Inf Sci, 2010, 53: 1848–1859

    MathSciNet  Article  Google Scholar 

  27. 27

    Zhou J X, Shi Z G, Fu Q. Three-dimensional scattering center extraction based on wide aperture data at a single elevation. IEEE Trans Geosci Remote Sens, 2015, 53: 1638–1655

    Article  Google Scholar 

  28. 28

    Palm S, Oriot H M, Cantalloube H M. Radargrammetric DEM extraction over urban area using circular SAR imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 4720–4725

    Article  Google Scholar 

  29. 29

    Dai E, Jin Y-Q, Hamasaki T, et al. Three-dimensional stereo reconstruction of buildings using polarimetric SAR images acquired in opposite directions. IEEE Geosci Remote Sens Lett, 2008, 5: 236–240

    Article  Google Scholar 

  30. 30

    Dungan K E, Austin C, Nehrbass J, et al. Civilian vehicle radar data domes. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 731–739

    Google Scholar 

  31. 31

    Casteel Jr C H, Gorham L A, Minardi M J, et al. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 7

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ya-Qiu Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jin, YQ. Imaging and structural feature decomposition of a complex target using multi-aspect polarimetric scattering. Sci. China Inf. Sci. 59, 082308 (2016). https://doi.org/10.1007/s11432-015-5491-7

Download citation

Keywords

  • scattering mechanism
  • polarimetric decomposition
  • multi-aspect
  • imaging
  • target recognition