Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Imaging and structural feature decomposition of a complex target using multi-aspect polarimetric scattering

Abstract

Based on the Huynen parametric decomposition of target scattering matrix, the polarimetric ellipse parameters are transformed and applied to decomposition of scattering mechanisms of a complex target in VHR POL-SAR images (very high resolution, polarimetric synthetic aperture radar). Making use of multi-aspect (or circle-aspect) and wideband VHR POL-SAR images, scattering mechanisms of a volumetric target and its structural components are recognized over image pixels. Utilizing the layover features, the target height profile is also estimated from two-dimensional image. As example, polarimetric scattering data of some vehicles on ground, including multi-aspect simulated data and experimental measurements, are applied to validations of scattering mechanism decompositions and target structural feature recognition.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Rihaczek A W, Hershkowitz S J. Radar Resolution and Complex-Image Analysis. Norwood: Artech House, 1996

  2. 2

    Lee J-S, Pottier E. Polarimetric Radar Imaging: From Basics to Applications. BocaRaton: CRC Press, 2009

  3. 3

    Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 1997, 35: 68–78

  4. 4

    Xu J Y, Yang J, Peng Y N. A new approach to dual-band polarimetric radar remote sensing image classification. Sci China Ser F-Inf Sci, 2005, 48: 747–760

  5. 5

    Huynen J R. Phenomenological theory of radar targets. Dissertation for the Ph.D. Degree. Delft: University of Technology, 1970

  6. 6

    Huynen J R. Phenomenological Theory of Radar Targets, Electromagnetic Scattering. New York: Academic Press, 1978

  7. 7

    Krogager E. New decomposition of the radar target scattering matrix. Electron Lett, 1990, 26: 1525–1527

  8. 8

    Cameron W L, Leung L K. Feature motivated polarization scattering matrix decomposition. In: Proceedings of IEEE International Radar Conference, Arlington, 1990. 549–557

  9. 9

    Cameron W L, Youssef N N, Leung L K. Simulated polarimetric signatures of primitive geometrical shapes. IEEE Trans Geosci Remote Sens, 1996, 34: 793–803

  10. 10

    Knott E F, Shaeffer J F, Tuley M T. Radar Cross Sections. 2nd ed. Raleigh: SciTech Publishing, 2004

  11. 11

    Keller J B. Geometrical theory of diffraction. J Opt Soc America, 1962, 52: 116–130

  12. 12

    Potter L C, Moses R L. Attributed scattering centers for SAR ATR. IEEE Trans Image Process, 1997, 6: 79–91

  13. 13

    Gerry M J, Potter L C, Gupta I J, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans Anten Propaga, 1999: 47, 1179–1188

  14. 14

    Richards J A, Willsky A S, Fisher J W. Expectation-maximization approach to target model generation from multiple synthetic aperture radar images. Optical Eng, 2002, 41: 150–166

  15. 15

    Jackson J A, Moses R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIII, 2006, 6237

  16. 16

    Jackson J A, Rigling B D, Moses R L. Canonical scattering feature models for 3D and bistatic SAR. IEEE Trans Aeros Electr Syst, 2010, 46: 525–541

  17. 17

    Jin Y-Q, Xu F. Polarimetric Scattering and SAR Information Retrieval. Hoboken: Wiley-IEEE Press, 2013

  18. 18

    Baird C, Kersey W T, Giles R, et al. Classification of targets using optimized ISAR Euler imagery. Proc SPIE Radar Sensor Technology X, 2006, 6210: 11

  19. 19

    Baird C, Giles R, Nixon W. Development and assessment of a complete ATR algorithm based on ISAR Euler imagery. Proc SPIE Radar Sensor Technology XI, 2007, 6547

  20. 20

    Dallmann T, Heberling D. Discrimination of scattering mechanisms via polarimetric rcs imaging. IEEE Anten Propaga Maga, 2014, 56: 154–165

  21. 21

    Ertin E, Austin C D, Sharma S, et al. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 12

  22. 22

    Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: a Signal Processing Approach. Boston: Kluwer Academic Publishers, 1996

  23. 23

    Knaell K, Cardillo G. Radar tomography for the generation of three-dimensional images. IEEE Proc Radar Sonar Navi, 1995, 142: 54–60

  24. 24

    Gorham L A, Moore L J. SAR image formation toolbox for MATLAB. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 223–263

  25. 25

    Jin Y Q, Lou L. Terrain topographic inversion using single-pass polarimetric SAR image data. Sci China Ser F-Inf Sci, 2004, 47: 490–500

  26. 26

    Wang B, Wang Y P, Hong W, et al. Studies on MB-SAR 3D imaging algorithm using Yule-Walker method. Sci China Inf Sci, 2010, 53: 1848–1859

  27. 27

    Zhou J X, Shi Z G, Fu Q. Three-dimensional scattering center extraction based on wide aperture data at a single elevation. IEEE Trans Geosci Remote Sens, 2015, 53: 1638–1655

  28. 28

    Palm S, Oriot H M, Cantalloube H M. Radargrammetric DEM extraction over urban area using circular SAR imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 4720–4725

  29. 29

    Dai E, Jin Y-Q, Hamasaki T, et al. Three-dimensional stereo reconstruction of buildings using polarimetric SAR images acquired in opposite directions. IEEE Geosci Remote Sens Lett, 2008, 5: 236–240

  30. 30

    Dungan K E, Austin C, Nehrbass J, et al. Civilian vehicle radar data domes. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 731–739

  31. 31

    Casteel Jr C H, Gorham L A, Minardi M J, et al. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 7

Download references

Author information

Correspondence to Ya-Qiu Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jin, Y. Imaging and structural feature decomposition of a complex target using multi-aspect polarimetric scattering. Sci. China Inf. Sci. 59, 082308 (2016). https://doi.org/10.1007/s11432-015-5491-7

Download citation

Keywords

  • scattering mechanism
  • polarimetric decomposition
  • multi-aspect
  • imaging
  • target recognition