Stochastic stability of cubature predictive filter

Cubature 预测滤波的随机稳定性分析


In this paper, the cubature predictive filter (CPF) is derived based on a third-degree spherical-radial cubature rule. It provides a set of cubature-points scaling linearly with the state-vector dimension, which makes it possible to numerically compute multivariate moment integrals encountered in the nonlinear predictive filter (PF). In order to facilitate the new method, the algorithm CPF is given firstly. Then, the theoretical analyses demonstrate that the estimated accuracy of the model error and system for the proposed CPF is higher than that of the traditional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of CPF for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system’s initial estimation error, disturbing noise terms as well as the model error are small enough, which is the core part of the CPF theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system.


本文基于三阶球面径向求容积法则提出了 Cubature 预测滤波器(CPF), 该方法通过一组线性化的 Cubature 采样点近似线性化状态变量, 用以解决非线性预测滤波中所遇到的多元积分问题。 为了便于该方法理解, 首先给出 CPF 的算法流程; 通过理论分析证明所提出的 CPF 方法较传统 PF 方法具有更高的模型误差及状态估计精度。 此外, 在随机框架下分析了 CPF 滤波器的随机有界性和误差范围。 特别是在系统初始误差、 外部扰动及模型误差小于某一有界值的情况下, CPF 滤波器的估计误差及协方差将保持有界。 最后, 通过非线性系统算例进行数值仿真, 验证了本文的理论分析结果。

This is a preview of subscription content, access via your institution.


  1. 1

    Crassidis J L, Markley F. Predictive filter for attitude estimation without rate sensors. J Guid Control Dynam, 1997, 20: 522–527

    Article  MATH  Google Scholar 

  2. 2

    Crassidis J L. Efficient and optimal attitude determination using model-error control synthesis. J Guid Control Dynam, 1999, 22: 193–201

    Article  Google Scholar 

  3. 3

    Lin Y R, Deng Z L. Model-error based on predictive filter for satellite attitude determination. J Aeronaut, 2001, 22: 79–88

    Google Scholar 

  4. 4

    Anton D R. Nonlinear State-Estimation for Spacecraft Attitude Determination. Canada: University of Toronto, 2001

    Google Scholar 

  5. 5

    Ji H X, Yang J. Satellite attitude determination based on nonlinear predictive filter (in Chinese). J Syst Simul, 2010, 22: 34–38

    MathSciNet  Google Scholar 

  6. 6

    Ajeesh P K, Sadasivan P. Performance analysis of nonlinear-predictive-filter-based chaotic synchronization. IEEE Trans Circ Syst-II: Express Brief, 2006, 53: 886–890

    Article  MATH  Google Scholar 

  7. 7

    Lu P. Nonlinear predictive controllers for continuous systems. J Guid Control Dynam, 1994, 17: 553–560

    Article  MATH  Google Scholar 

  8. 8

    Lu P. Nonlinear predictive controllers for continuous nonlinear systems. J Guid Control Dynam, 1995, 62: 633–649

    MATH  Google Scholar 

  9. 9

    Crassidis J L, Mason P A C, Mook D J. Riccati solution for the minimum model error algorithm. J Guid Control Dynamic, 1993, 16: 1181–1183

    Article  MATH  Google Scholar 

  10. 10

    Crassidis J L, Markley F. A minimum model error approach for attitude estimation. J Guid Control Dynam, 1997, 20: 1241–1247

    Article  MATH  Google Scholar 

  11. 11

    Li L, Xia Y Q. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica, 2012, 48: 978–981

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Arasaratnam I, Haykin S. Cubature Kalman filter. IEEE Trans Automatic Control, 2009, 54: 1254–1269

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Macagnano D, de Abreu G. Adaptive fating for multitarget tracking with Gussian mixture filters. IEEE Trans Signal Process, 2012, 60: 1533–1538

    MathSciNet  Article  Google Scholar 

  14. 14

    Tarn T J, Rasis Y. Observers for nonlinear stochastic systems. IEEE Trans Automat Contr, 1976, 21: 441–448

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Reif K, Gunther S, Yaz E, et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Automat Contr, 1999, 44: 714–728

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Goodwin G C, Sin K S. Adaptive Filtering, Prediction and Control. Englewood Cliffs: Prentice-Hall, 1984

    Google Scholar 

  17. 17

    Lewis F L. Optimal Estimation. New York: Wiley, 1986

    Google Scholar 

  18. 18

    Zurmuhl R, Falk F. Matrizen und ihre Anwendungen fur Angewandte Mathematiker, Physiker und Ingenieure. Berlin: Springer-Verlag, 1984

    Google Scholar 

  19. 19

    Gard T C. Introduction to Stochastic Differential Equation. New York: Marcel Dekker, 1988

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lu Cao 曹璐.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Chen, X. Stochastic stability of cubature predictive filter. Sci. China Inf. Sci. 59, 92203 (2016).

Download citation


  • predictive filter
  • cubature rule
  • nonlinear filter
  • stochastic system


  • 预测滤波
  • 求容积法则
  • 非线性滤波
  • 随机系统