DLSLA 3-D SAR imaging algorithm for off-grid targets based on pseudo-polar formatting and atomic norm minimization

基于伪极坐标变换和原子范数最小化的网格偏离目标DLSLA 3-D SAR成像方法


This paper concerns the imaging problem for downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) under the circumstance of sparse and non-uniform cross-track dimensional virtual phase centers configuration. Since the 3-D imaging scene behaves typical sparsity in a certain domain, sparse recovery approaches hold the potential to achieve a better reconstruction performance. However, most of the existing compressive sensing (CS) algorithms assume the scatterers located on the pre-discretized grids, which is often violated by the off-grid effect. By contrast, atomic norm minimization (ANM) deals with sparse recovery problem directly on continuous space instead of discrete grids. This paper firstly analyzes the off-grid effect in DLSLA 3-D SAR sparse image reconstruction, and then introduces an imaging method applied to off-gird targets reconstruction which combines 3-D pseudo-polar formatting algorithm (pseudo-PFA) with ANM. With the proposed method, wave propagation and along-track image reconstruction are operated with pseudo-PFA, then the cross-track reconstruction is implemented with semidefinite programming (SDP) based on the ANM model. The proposed method holds the advantage of avoiding the off-grid effect and managing to locate the off-grid targets to accurate locations in different imaging scenes. The performance of the proposed method is verified and evaluated by the 3-D image reconstruction of different scenes, i.e., point targets and distributed scene.


下视稀疏线性阵列三维合成孔径雷达(DLSLA 3-D SAR)常常由于跨航向的稀疏阵列安装条件受限等因素出现等效相位中心缺失和非均匀分布的情况,造成跨航向稀疏非均匀采样。对于具有稀疏性的3-D SAR成像场景,压缩感知(CS)方法能够在稀疏非均匀采样情况下获得良好的重构效果。然而,大多数CS算法都是基于离散假设,即假设散射点准确位于离散网格上;当真实散射点与离散网格不重合时,CS算法的重构效果将会受到网格偏离现象(off-grid effect)的影响。与离散的CS算法不同,原子范数最小化方法(ANM)直接在连续域上对稀疏信号进行恢复,不受网格偏离现象的影响。本文首先分析了DLSLA 3-D SAR跨航向稀疏重构时存在的网格偏离现象,然后提出了伪极坐标变换与原子范数最小化结合的成像算法。该算法首先通过距离压缩对波传播方向成像,然后对航迹向和跨航向进行伪极坐标变换,并通过傅里叶变换实现航迹向成像,然后在跨航向利用原子范数最小化方法进行成像。本文提出的方法能够在不同的成像场景中避免网格偏离现象、获得精确的成像结果。不同成像场景(点目标和分布式目标场景)的仿真实验成像结果验证了本文算法的有效性。

This is a preview of subscription content, access via your institution.


  1. 1

    Soumekh M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms. New York: Wiley, 1999

    Google Scholar 

  2. 2

    Zhu X, Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Trans Geosci Remote Sens, 2012, 50: 247–258

    Article  Google Scholar 

  3. 3

    Aguilera E, Nannini M, Reigber A. Wavelet-based compressed sensing for SAR tomography of forested areas. IEEE Trans Geosci Remote Sens, 2013, 51: 5283–5295

    Article  Google Scholar 

  4. 4

    Lin Y, Hong W, Tan W X, et al. Airborne circular SAR imaging: results at P-band. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 5594–5597

    Google Scholar 

  5. 5

    Shi J, Zhang X L, Xiang G, et al. Signal processing for microwave array imaging: TDC and sparse recovery. IEEE Trans Geosci Remote Sens, 2012, 50: 4584–4598

    Article  Google Scholar 

  6. 6

    Du L, Wang Y P, Hong W, et al. A three-dimensional range migration algorithm for downward-looking 3-D-SAR with single-transmitting and multiple-receiving linear array antennas. EURASIP J Adv Signal Process, 2010, 2010: 1–15

    Article  Google Scholar 

  7. 7

    Peng X M, Hong W, Wang Y P, et al. Polar format imaging algorithm with wave-front curvature phase error compensation for airborne DLSLA three-dimensional SAR. IEEE Geosci Remote Sens Lett, 2014, 11: 1036–1040

    Article  Google Scholar 

  8. 8

    Weib M, Ender J H G. A 3-D imaging radar for small unmanned airplanes-ARTINO. In: Proceedings of European Radar Conference, Paris, 2005. 209–212

    Google Scholar 

  9. 9

    Peng X M, Wang Y P, Hong W, et al. Airborne downward looking sparse linear array 3-D SAR heterogeneous parallel simulation. Remote Sens, 2013, 5: 5304–5329

    Article  Google Scholar 

  10. 10

    Wei S J, Zhang X L, Shi J. Linear array sar imaging via compressed sensing. Progress in Electromagn Res, 2011, 117: 299–319

    Article  Google Scholar 

  11. 11

    Ren X Z, Chen L, Yang J. 3-D imaging algorithm for down-looking MIMO array SAR based on Bayesian compressive sensing. Int J Antenn Propag, 2014, 2014: 612326

    Google Scholar 

  12. 12

    Li Z, Chen J, Li C S. Spaceborne SIMO-SAR for three-dimensional ionospheric irregularity sounding. IEEE Trans Aero Electron Syst, 2014, 50: 2830–2846

    Article  Google Scholar 

  13. 13

    Candes E J, Wakin M B. An Introduction to Compressive Sampling. IEEE Signal Process Mag, 2008, 25: 21–30

    Article  Google Scholar 

  14. 14

    Fannjiang A, Tseng H C. Compressive radar with off-grid targets: a perturbation approach. Inverse Problems, 2013, 29: 054008

    Article  MATH  Google Scholar 

  15. 15

    Chi Y, Scharf L L, Pezeshki A, et al. Sensitivity to basis mismatch in compressed sensing. IEEE Trans Signal Process, 2011, 59: 2182–2195

    MathSciNet  Article  Google Scholar 

  16. 16

    Rao W, Li G, Wang X, et al. Adaptive Sparse Recovery by Parametric Weighted L 1 Minimization for ISAR Imaging of Uniformly Rotating Targets. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2013, 6: 942–952

    Article  Google Scholar 

  17. 17

    He X Y, Liu C C, Liu B, et al. Sparse frequency diverse MIMO radar imaging for off-grid target based on adaptive iterative map. Remote Sens, 2013, 5: 631–647

    Article  Google Scholar 

  18. 18

    Yan H C, Xu J, Xia X G, et al. Wideband underwater sonar imaging via compressed sensing with scaling effect compensation. Sci China Inf Sci, 2015, 58: 020306

    Article  Google Scholar 

  19. 19

    Tang G, Bhaskar B N, Shah P, et al. Compressed sensing off the grid. IEEE Trans Inf Theory, 2013, 59: 7465–7490

    MathSciNet  Article  Google Scholar 

  20. 20

    Bhaskar B N, Tang G, Recht B. Atomic norm denoising with applications to line spectral estimation. IEEE Trans Signal Process, 2013, 61: 5987–5999

    MathSciNet  Article  Google Scholar 

  21. 21

    Yang Z, Xie L H. Continuous compressed sensing with a single or multiple measurement vectors. In: Proceedings of IEEE Workshop on Statistical Signal Processing (SSP), Gold Coast, 2014. 288–291

    Google Scholar 

  22. 22

    Zhang Z, Zhang B C, Jiang C L, et al. Influence factors of sparse microwave imaging radarsystem performance: approaches to waveformdesign and platform motion analysis. Sci China Inf Sci, 2012, 55: 2301–2317

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Grant M, Boyd S. CVX: Matlab software for disciplined convex programming. Version 2.1. http://cvxr.com/cvx. 2014

    Google Scholar 

  24. 24

    Daubechies I, Defriese M, de Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math, 2004, 57: 1413–1457

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. New York: Wiley, 2002

    Google Scholar 

  26. 26

    Toh K C, Todd M J, Tütüncü R H. SDPT3 — a MATLAB software package for semidefinite programming, ver 1.3. Optimiz Method Softw, 1999, 11: 545–581

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qian Bao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, Q., Han, K., Peng, X. et al. DLSLA 3-D SAR imaging algorithm for off-grid targets based on pseudo-polar formatting and atomic norm minimization. Sci. China Inf. Sci. 59, 062310 (2016). https://doi.org/10.1007/s11432-015-5477-5

Download citation


  • atomic norm minimization
  • sparse recovery
  • off-grid targets
  • pseudo-PFA
  • 3-D imaging


  • 原子范数最小化
  • 稀疏信号恢复
  • 偏离网格目标
  • 伪极坐标变换
  • 三维成像