Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A novel user behavioral aggregation method based on synonym groups in online video systems

一种基于同义词组的在线视频系统用户行为汇聚的新方法

创新点

在线视频服务系统的激增蕴藏着巨大的商业利益。用户个人偏好,性别,年龄等信息对于个性化服务及广告推荐至关重要。针对在线视频系统中,用户行为数据的严重稀疏性及用户偏好的最大化保留问题,本文提出了一种新的基于同义词组的用户行为汇聚方法,并利用汇聚结果对用户进行了性别预测。与现有的方法相比,本文方法有效地降低了数据的稀疏性,极大地减少了用户偏好信息损失,并进一步提高了性别预测的准确性。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Weinsberg U, Bhagat S, Ioannidis S, et al. BlurMe: inferring and obfuscating user gender based on ratings. In: Proceedings of the 6th ACM Conference on Recommender Systems, New York, 2012. 195–202

  2. 2

    Salamatian S, Zhang A, Calmon F D P, et al. How to hide the elephant-or the donkey-in the room: practical privacy against statistical inference for large data. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Austin, 2013. 269–272

  3. 3

    Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior. In: Proceedings of the National Academy of Sciences, Berkeley, 2013. 5802–5805

  4. 4

    Bruckman A. Gender swapping on the Internet. High Noon on the Electronic Frontier: Conceptual Issues in Cyberspace, 1996. 317–326

  5. 5

    Feng T, Guo Y, Chen Y, et al. Tags and titles of videos you watched tell your gender. In: Proceedings of the IEEE International Conference on Communications, Sydney, 2014. 1837–1842

Download references

Author information

Correspondence to Tingting Feng.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Guo, Y. & Chen, Y. A novel user behavioral aggregation method based on synonym groups in online video systems. Sci. China Inf. Sci. 59, 1–3 (2016). https://doi.org/10.1007/s11432-015-5466-8

Download citation

Keywords

  • 029101

关键词

  • 用户行为汇聚
  • 同义词组
  • 性别预测
  • 用户兴趣偏好
  • 个性化服务