Output performance optimization for RTD fluxgate sensor based on dynamic permeability

基于动态磁导率参数的时间差型磁通门传感器的输出响应优化

Abstract

The output performance of residence times difference (RTD) fluxgate may vary under different driving conditions (driving currents and frequencies) and core materials. To optimize the RTD fluxgate and simplify its design process, an analytical model is employed to select the parameters and identify the effective factors that dominate the performance. The dynamic permeability parameters (P i ), which reflect the changes in the magnetization curve, are mathematically analyzed in detail. The linear variation functions of P i in different driving conditions are fitted by using the dynamic arctangent hysteresis model. Consequently, the selection of driving conditions and core materials, which are assessed by comparing the experiment and simulation results, has an important role in achieving the optimal output performance of the RTD fluxgate.

抽象

创新点

滞留时间差型(RTD)磁通门的输出响应会随着不同的激励条件(激励信号的幅值和频率)和不同的磁芯材料而改变。为了优化RTD型磁通门和简化其设计过程, 本文提出了一种基于选择和确定对其输出响应有主导作用的有效因子的分析模型, 进而详细地讨论能够反映磁化曲线变化的动态磁导率参数(Pi)。在不同的激励条件下, 用动态反正切磁滞模型拟合Pi的线性变化函数, 并通过理论计算与仿真结合的方式得到最优设计参数。最后, 实验和仿真结果的对比表明该方法可以指导激励条件和磁芯材料的选择, 这对于RTD型磁通门输出响应的优化具有很重要的意义。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Andò B, Baglio S, Bulsara A R, et al. RTD fluxgate: a low power nonlinear device to sense weak magnetic fields. IEEE Instrum Meas Mag, 2005, 8: 64–73

    Article  Google Scholar 

  2. 2

    Primdahl F. The fluxgate magnetometer. J Phys E: Sci Instrum, 1979, 12: 241–253

    Article  Google Scholar 

  3. 3

    Zhang H G, Wang Y C, Song Z. Absolute stabilization of singular systems with ferromagnetic hysteresis nonlinearity. Sci China Inf Sci, 2013, 56: 078201

    MathSciNet  Google Scholar 

  4. 4

    Sivasubramanian S, Widom A, Srivastava Y. Equivalent circuit and simulations for the landau-khalatnikov model of ferroelectric hysteresis. IEEE Trans Ultrason Ferroelect Freq Control, 2003, 50: 950–957

    Article  Google Scholar 

  5. 5

    Luo W, Liu S. Fitting the curve of magnetic hysteresis loop of ferromagnetic material of fluxgate. Metallic Funct Mater, 2008, 15: 30–32

    MathSciNet  Google Scholar 

  6. 6

    Ripka P, Butta M, Fan J, et al. Sensitivity and noise of wire-core transverse fluxgate. IEEE Trans Magn, 2010, 46: 654–657

    Article  Google Scholar 

  7. 7

    Eyal W, Eugene P. Noise investigation of the orthogonal fluxgate employing alternating direct current bias. J Appl Phys, 2011, 109: 07E529

    Google Scholar 

  8. 8

    Héctor T, Juan C, Mairée R, et al. Analysis of the fluxgate response through a simple spice model. Sensor Actuat, 1999, 75: 1–7

    Article  Google Scholar 

  9. 9

    Geiler A L, Harris V G, Vittoria C, et al. A quantitative model for the nonlinear response of fluxgate magnetometers. J Appl Phys, 2006, 99: 08B316

    Article  Google Scholar 

  10. 10

    Andò B, Baglio S, Bulsara A, et al. RTD fluxgate behavioral model for circuit simulation. In: Proceedings of Eurosensors XXIV Conference. Linz: Elsevier Press, 2010. 1288–1291

    Google Scholar 

  11. 11

    Andò B, Baglio S, Bulsara A R, et al. SPICE simulation of coupled core fluxgate magnetometers. In: Proceedings of Instrumentation and Measurement Technology Conference. Binjiang: IEEE Press, 2011. 1–5

    Google Scholar 

  12. 12

    Andò B, Baglio S, Bulsara A R, et al. Adaptive modeling of hysteretic magnetometers. IEEE Trans Instrum Meas, 2012, 61: 1361–1367

    Article  Google Scholar 

  13. 13

    Andò B, Baglio S, Sacco V, et al. Effects of driving mode and optimal material selection on a residence times difference-based fluxgate magnetometer. IEEE Trans Instrum Meas, 2005, 54: 1366–1373

    Article  Google Scholar 

  14. 14

    Yin C, Jia Z, Ma W C, et al. Modeling and analysis of nano-sized GMRs based on Co, NiFe and Ni materials. Sci China Inf Sci, 2014, 57: 022404

    Google Scholar 

  15. 15

    Andò B, Ascia A, Baglio S, et al. Towards an optimal readout of a RTD fluxgate magnetometer. Sensor Actuat A Phys, 2008, 142: 73–79

    Article  Google Scholar 

  16. 16

    Canepa F, Chirafici S, Napolentano M, et al. Nonlinear effects in the ac magnetic susceptibility of selected magnetic materials. J Alloy Compd, 2007, 442: 142–145

    Article  Google Scholar 

  17. 17

    Wang Y, Wu S, Zhou Z, et al. Research on the dynamic hysteresis loop model of the residence times difference (RTD)-fluxgate. Sensors, 2013, 13: 11539–11552

    Article  Google Scholar 

  18. 18

    Andò B, Baglio S, Bulsara A R, et al. Investigation on optimal materials selection in RTD-fluxgate design. In: Proceedings of Instrumentation and Measurement Technology Conference. Ottawa: IEEE Press, 2005. 1261–1265

    Google Scholar 

  19. 19

    Andò B, Baglio S, Bulsara A R, et al. “Residence times difference” fluxgate magnetometers. IEEE Sensor J, 2005, 5: 895–904

    Article  Google Scholar 

  20. 20

    Bulsara A R, Seberino C, Gammaitoni L, et al. Signal detection via residence-time asymmetry in noisy bistable devices. Phys Rev E, 2003, 67: 016120

    Article  Google Scholar 

  21. 21

    Andò B, Baglio S, Bulgan A R, et al. A new readout strategy for fluxgate sensor. In: Proceedings of Instrumentation and Measurement Conference. Vail: IEEE Press, 2003. 600–604

    Google Scholar 

  22. 22

    Nikitin A, Stocks N G, Bulsara A R. Signal detection via residence times statistics: noise-mediated minimization of the measurement error. Phys Rev E, 2003, 68: 036133

    Article  Google Scholar 

  23. 23

    Andò B, Baglio S, Bulsara A R, et al. “Residence times difference” fluxgate. Measurement, 2005, 38: 89–112

    Article  Google Scholar 

  24. 24

    Stewart M, Cain M G. Ferroelectric Hysteresis Measurement & Analysis. NPL Report CMMT(A). 1999

    Google Scholar 

  25. 25

    Lei C, Wang R, Zhou Y, et al. MEMS micro fluxgate sensors with mutual vertical excitation coils and detection coils. Micro Syst Tech, 2009, 15: 969–972

    Article  Google Scholar 

  26. 26

    Chiesi L, Kejik P, Janossy B, et al. Planar 2D micro-fluxgate sensor. Sens Actuat A Phys, 2000, 82: 174–180

    Article  Google Scholar 

  27. 27

    Andò B, Baglio S, Pitrone N, et al. Noise effects in RTD fluxgate. IEEE Sensor J, 2005, 4: 935–938

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanzhang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, S., Lu, H. et al. Output performance optimization for RTD fluxgate sensor based on dynamic permeability. Sci. China Inf. Sci. 59, 112213 (2016). https://doi.org/10.1007/s11432-015-5465-9

Download citation

Keywords

  • RTD fluxgate
  • hysteresis loop
  • analysis of dynamic permeability
  • simulation
  • output response

关键词

  • RTD型磁通门
  • 磁滞回线
  • 动态磁导率
  • 仿真
  • 输出响应