Physical-layer secrecy outage of spectrum sharing CR systems over fading channels


In this paper, we investigate the physical-layer secrecy outage performance of underlay spectrum sharing systems over Rayleigh and log-normal fading channels in the presence of one eavesdropper. In particular, the secondary transmitter sends data to the legitimate receiver under the constraints of the interference temperature at the primary receiver, while suffering the wiretap from the eavesdropper. Closed-form and approximated expressions are derived for the secrecy outage probability over Rayleigh and log-normal fading channels, respectively. The accuracy of our performance analysis is verified by simulation results.



在Underlay频谱共享系统中, 本文分别基于Rayleigh和log-normal衰落信道研究了存在一个窃密者时的物理层保密中断性能。当次级发送者在向次级接收者发送数据时, 不仅其发射功率受到主用户干扰功率容限的限制, 同时还要遭到窃密者的窃听。在Rayleigh和log-normal衰落信道下, 本文分别推导出了保密中断概率的准确和近似闭式表达式。最后, 通过了蒙特卡洛仿真验证了本文提出的性能分析模型。


本文首次研究了Underlay频谱共享系统分别在Rayleigh和log-normal衰落信道中的物理层保密中断性能, 并分别推导出了准确和近似闭式表达式。

This is a preview of subscription content, access via your institution.


  1. 1

    Wyner D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355–1367

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Bloch M, Barros J, Rodrigues M R D, et al. Wireless information theoretic security. IEEE Trans Inf Theory, 2008, 54: 2515–2534

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Liu T, Shamai S. A note on the secrecy capacity of the multiple-antenna wiretap channel. IEEE Trans Inf Theory, 2009, 55: 2547–2553

    MathSciNet  Article  Google Scholar 

  4. 4

    Li Q, Song H, Huang K. Achieving secure transmission with equivalent multiplicative noise in MISO wiretap channels. IEEE Commu Lett, 2013, 17: 892–895

    Article  Google Scholar 

  5. 5

    Li Q, Ma W-K, Man-Cho So A. A safe approximation approach to secrecy outage design for MIMO wiretap channels. IEEE Sig Process Lett, 2014, 21: 118–121

    Article  Google Scholar 

  6. 6

    Sun X, Wang J, Xu W, et al. Performance of secure communications over correlated fading channels. IEEE Sig Process Lett, 2012, 19: 479–482

    Article  Google Scholar 

  7. 7

    Liu X. Secrecy capacity of wireless links subject to log-normal fading. In: Proceedings of 7th International Conference on Communications and Networking in China, Kunming, 2012. 167–172

    Google Scholar 

  8. 8

    Zhang X, Pan G, Tang C, et al. Performance analysis of physical layer security over independent/correlated lognormal fading channels. In: Proceedings of Australasian Telecommunication Networks and Applications Conference, Melbourne, 2014. 23–27

    Google Scholar 

  9. 9

    Zahurul M, Sarkar I, Ratnarajah T. Secrecy capacity over correlated log-normal fading channel. In: Proceedings of IEEE International Conference on Communications, Ottawa, 2012. 883–887

    Google Scholar 

  10. 10

    Mitola J. Cognitive radio: an integrated agent architecture for software defined radio. Dissertation for Ph.D. Degree. Stockholm: KTH, 2000

    Google Scholar 

  11. 11

    Shu Z, Qian Y, Ci S. On physical layer security for cognitive radio networks. IEEE Netw, 2013, 27: 28–33

    Google Scholar 

  12. 12

    Zou Y, Wang X, Shen W. Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans Commu, 2013, 61: 5103–5113

    Article  Google Scholar 

  13. 13

    Sakran H, Shokair M, Nasr O, et al. Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Commun, 2012, 6: 2676–2687

    MathSciNet  Article  Google Scholar 

  14. 14

    Wen H, Li S, Zhu X, et al. A framework of the PHY-layer approach to defense against security threats in cognitive radio networks. IEEE Netw, 2013, 27: 34–39

    Article  Google Scholar 

  15. 15

    Tang C, Pan G, Li T. Secrecy outage analysis of underlay cognitive radio unit over Nakagami-m fading channels. IEEE Wirel Commun Lett, 2014, 3: 609–612

    Article  Google Scholar 

  16. 16

    Elkashlan M, Wang L, Duong T Q, et al. On the security of cognitive radio networks. IEEE Trans Veh Techol, 2015, 64: 3790–3795

    Article  Google Scholar 

  17. 17

    Papoulis A. Probability, Random Variables and Stochastic Processes. 4th ed. New York: McGraw Hill, 2001

    MATH  Google Scholar 

  18. 18

    He F, Man H, Wang W. Maximal ratio diversity combining enhanced security. IEEE Commun Lett, 2011, 15: 509–511

    Article  Google Scholar 

  19. 19

    Krishnamoorthy K. Handbook of Statistical Distributions with Applications. New York: Chapman & Hall, 2006

    Book  MATH  Google Scholar 

  20. 20

    Fenton L. The sum of log-normal probability distributions in scatter transmission systems. IRE Trans Commun Syst, 1960, 8: 57–67

    Article  Google Scholar 

  21. 21

    Pan G, Tang C, Zhang X, et al. Physical layer security over non-small scale fading channels. IEEE Trans Veh Tech, 2016, 65: 1326–1339

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gaofeng Pan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, H., Jiang, H. et al. Physical-layer secrecy outage of spectrum sharing CR systems over fading channels. Sci. China Inf. Sci. 59, 102308 (2016).

Download citation


  • spectrum sharing
  • cognitive radio
  • secrecy outage probability
  • Rayleigh fading channels
  • log-normal fading channels


  • 频谱共享
  • 认知无线电
  • 保密中断概率
  • Rayleigh 衰落信道
  • log-normal 衰落信道