An on-line calibration hydrophone with electrostatic actuator



On-line sensitivity calibration of hydrophones is of considerable significance for their practical application. An on-line method using an electrostatic actuator is proposed in this paper for a radially polarized cylindrical piezoelectric hydrophone. The theory of this calibration method is analyzed. A calibration structure with an electrostatic actuator is designed, and is integrated with the hydrophone sensing element. The sensitivity and frequency characteristics of the electrostatic actuator are measured experimentally. The sensitivity of the hydrophone is calibrated and compared with its free-field sensitivity. Uncertainty analysis shows that the expanded uncertainty of the proposed calibration method is about 1.1 dB at a confidence probability of 95%, which meets the uncertainty requirements for hydrophone sensitivity calibration.



This is a preview of subscription content, access via your institution.


  1. 1

    Yan H C, Xu J, Xia X G, et al. Wideband underwater sonar imaging via compressed sensing with scaling effect compensation. Sci China Inf Sci, 2015, 58: 020306

    Article  Google Scholar 

  2. 2

    Wang S G, Zeng X Y. Robust underwater noise targets classification using auditory inspired time-frequency analysis. Appl Acoust, 2014, 78: 68–76

    Article  Google Scholar 

  3. 3

    Feng Y, Tao R, Wang Y. Modeling and characteristic analysis of underwater acoustic signal of the accelerating propeller. Sci China Inf Sci, 2012, 55: 270–280

    Article  Google Scholar 

  4. 4

    Robert J B. Underwater Electroacoustic Measurements (in Chinese). Beijing: National Defend Industy Press, 1977

    Google Scholar 

  5. 5

    Zheng S J, Yuan W J, Mu R X, et al. Underwater Acoustic Measurement Technology (in Chinese). Harbin: Harbin Engineering University Press, 1995

    Google Scholar 

  6. 6

    An L. Research and development of underwater electroacoustic measurements and calibrations. Dissertation for the Master Degree. Nanjing: Southeast University, 2005. 5–15

    Google Scholar 

  7. 7

    Schloss F, Strasberg M. Hydrophone calibration in a vibrating column of liquid. J Acoust Soc Am, 1962, 34: 958–960

    Article  Google Scholar 

  8. 8

    Gibbings D L H, Gibson A V. The wide-band calibration of capacitor microphones. Metrologia, 1984, 20: 95–99

    Article  Google Scholar 

  9. 9

    Jarvis D R. The accuracy of the electrostatic actuator method of determining the frequency response of condenser microphones. J Sound Vibration, 1988, 123: 63–70

    Article  Google Scholar 

  10. 10

    B&K. Microphone Handbook. Vol. 1: Theory. 1996

    Google Scholar 

  11. 11

    Shams Q A, Soto H L. Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations. J Acoust Soc Am, 2009, 126: 1107–1110

    Article  Google Scholar 

  12. 12

    Cheng X B, Li X D. An on-line self-calibration hydrophone. Chinese Patent, 200610066307.7, 2006-10

    Google Scholar 

  13. 13

    Zhang Y. Research on smart self-calibration hydrophone. Dissertation for the Master Degree. Taiyuan: North University of China, 2007

    Google Scholar 

  14. 14

    Robinson S, Lepper P, Hazelwood R. Good practice guide for underwater noise measurement. NPL Good Practice Guide. No. 133. 2014

    Google Scholar 

  15. 15

    Urick R J. Ambient Noise in The Sea. Washington: Undersea Warfare Technology Office, 1984

    Google Scholar 

  16. 16

    Wang D Z, Shang E C. Hydroacoustics (in Chinese). Beijing: Science Press, 1981

    Google Scholar 

  17. 17

    Knudsen V O, Alford R S, Emling J W. Underwater ambient noise. J Marine Res, 1948, 7: 410–429

    Google Scholar 

  18. 18

    Wang Z Y, Liu Z M. Measurement Error and Evaluation of Uncertainty (in Chinese). Beijing: Science Press, 2008

    Google Scholar 

  19. 19

    Robinson S. Uncertainties in Free-Field Hydrophone Calibration. Underwater Acoustics Technical Guidance Note, 2014

    Google Scholar 

  20. 20

    Wang Y B, Chen Y, Yuan W J. Verification Regulation of Standard Hydrophones in the Frequency Range 1 kHz–1 MHz JJG 1017-2007. Beijing: China Zhijian Publishing House, 2007

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zhaoli Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, Z., Chen, B. et al. An on-line calibration hydrophone with electrostatic actuator. Sci. China Inf. Sci. 59, 062311 (2016).

Download citation


  • underwater measurement
  • hydrophone
  • on-line sensitivity calibration
  • electrostatic actuator
  • uncertainty


  • 水下测量
  • 水听器
  • 在线灵敏度校准
  • 静电激励器
  • 不确定度