Skip to main content
Log in

Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems

主从式参数不确定刚性航天器群的自适应一致性控制

  • Research Paper
  • Special Focus on Distributed Control of Nonlinear Multi-Agent Systems and Applications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The existing results on the leader-following attitude consensus for multiple rigid spacecraft systems assume that all the parameters of the spacecraft systems are known exactly and the information flow among the followers is bidirectional. In this paper, we remove these two assumptions. First, by introducing a new Lyapunov function, we allow the communication network to be directed. Second, we convert the leader-following consensus problem into an adaptive stabilization problem of a well defined error system. Then, under the standard assumption that the state of the leader system can reach every follower through a directed path, we further show that this stabilization problem is solvable by a distributed adaptive control law. Moreover, we also present the sufficient condition for guaranteeing the convergence of the estimated parameters to the unknown actual parameters.

创新点

现有文献针对主从式刚性航天器群的一致性控制问题受限于两个假设。一是系统参数须精确已知。二是航天器间需要双向通信。本文提出新的控制算法以去掉此两种假设。首先,通过设计新的李雅普诺夫函数,使得航天器间的双向通信不再必要。其次,将原有的一致性问题转化为误差动态系统的镇定问题,并提出一种分布式自适应算法实现系统的镇定。另外,本文给出了保证估计参数收敛到真实值的充分条件。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai H, Arcak M, Wen J T. Rigid body attitude coordination without inertial frame information. Automatica, 2008, 44: 3170–3175

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50: 1109–1115

    Article  MathSciNet  MATH  Google Scholar 

  3. Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Syst Control Lett, 2009, 58: 429–435

    Article  MathSciNet  MATH  Google Scholar 

  4. Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. J Guid Control Dyn, 2007, 30: 633–638

    Article  Google Scholar 

  5. Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (part II): control. In: Proceedings of the American Control Conference, Boston, 2004. 2976–2985

    Google Scholar 

  6. Van Dyke M C, Hall C D. Decentralized coordinated attitude control within a formation of spacecraft. J Guid Control Dyn, 2006, 29: 1101–1109

    Article  Google Scholar 

  7. Wang N, Zhang TW, Xu J Q. Formation control for networked spacecraft in deep space: with or without communication delays and with switching topology. Sci China Inf Sci, 2011, 54: 469–481

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Z, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans Autom Control, 2009, 54: 600–605

    Article  MathSciNet  Google Scholar 

  9. Yuan J S C. Closed-loop manipulator control using quaternion feedback. IEEE J Robotic Autom, 1988, 4: 434–440

    Article  Google Scholar 

  10. Ahmed J, Coppola V T, Bernstein D. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification. J Guid Control Dyn, 1998, 21: 684–691

    Article  Google Scholar 

  11. Liu L, Chen Z, Huang J. Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica, 2009, 45: 1306–1311

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyd S, Sastry S. On parameter convergence in adaptive control. Syst Control Lett, 1983, 3: 311–319

    Article  MathSciNet  MATH  Google Scholar 

  13. Lasalle J P. Asymptotic stability criteria. In: Proceedings of Symposia in Applied Mathematics, Providence, 1962. 13: 299–307

    Article  MathSciNet  MATH  Google Scholar 

  14. Godsil C, Royal G. Algebraic Graph Theory. New York: Springer-Verlag, 2001. 163–164, 279–281

    Article  Google Scholar 

  15. Horn R, Johnson C. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991. 113–114

    Book  MATH  Google Scholar 

  16. Su Y, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Control, 2012, 57: 1062–1066

    Article  MathSciNet  Google Scholar 

  17. Lewis F L, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems. Philadelphia: Taylor and Francis Inc, 1998. 112

    Google Scholar 

  18. Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002. 102–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Huang, J. Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. Sci. China Inf. Sci. 59, 1–13 (2016). https://doi.org/10.1007/s11432-015-5442-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5442-3

Keywords

关键词

Navigation