Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems


  • 305 Accesses

  • 34 Citations


The existing results on the leader-following attitude consensus for multiple rigid spacecraft systems assume that all the parameters of the spacecraft systems are known exactly and the information flow among the followers is bidirectional. In this paper, we remove these two assumptions. First, by introducing a new Lyapunov function, we allow the communication network to be directed. Second, we convert the leader-following consensus problem into an adaptive stabilization problem of a well defined error system. Then, under the standard assumption that the state of the leader system can reach every follower through a directed path, we further show that this stabilization problem is solvable by a distributed adaptive control law. Moreover, we also present the sufficient condition for guaranteeing the convergence of the estimated parameters to the unknown actual parameters.



This is a preview of subscription content, log in to check access.


  1. 1

    Bai H, Arcak M, Wen J T. Rigid body attitude coordination without inertial frame information. Automatica, 2008, 44: 3170–3175

  2. 2

    Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50: 1109–1115

  3. 3

    Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Syst Control Lett, 2009, 58: 429–435

  4. 4

    Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. J Guid Control Dyn, 2007, 30: 633–638

  5. 5

    Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (part II): control. In: Proceedings of the American Control Conference, Boston, 2004. 2976–2985

  6. 6

    Van Dyke M C, Hall C D. Decentralized coordinated attitude control within a formation of spacecraft. J Guid Control Dyn, 2006, 29: 1101–1109

  7. 7

    Wang N, Zhang TW, Xu J Q. Formation control for networked spacecraft in deep space: with or without communication delays and with switching topology. Sci China Inf Sci, 2011, 54: 469–481

  8. 8

    Chen Z, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans Autom Control, 2009, 54: 600–605

  9. 9

    Yuan J S C. Closed-loop manipulator control using quaternion feedback. IEEE J Robotic Autom, 1988, 4: 434–440

  10. 10

    Ahmed J, Coppola V T, Bernstein D. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification. J Guid Control Dyn, 1998, 21: 684–691

  11. 11

    Liu L, Chen Z, Huang J. Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica, 2009, 45: 1306–1311

  12. 12

    Boyd S, Sastry S. On parameter convergence in adaptive control. Syst Control Lett, 1983, 3: 311–319

  13. 13

    Lasalle J P. Asymptotic stability criteria. In: Proceedings of Symposia in Applied Mathematics, Providence, 1962. 13: 299–307

  14. 14

    Godsil C, Royal G. Algebraic Graph Theory. New York: Springer-Verlag, 2001. 163–164, 279–281

  15. 15

    Horn R, Johnson C. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991. 113–114

  16. 16

    Su Y, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Control, 2012, 57: 1062–1066

  17. 17

    Lewis F L, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems. Philadelphia: Taylor and Francis Inc, 1998. 112

  18. 18

    Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002. 102–103

Download references

Author information

Correspondence to Jie Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Huang, J. Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. Sci. China Inf. Sci. 59, 1–13 (2016). https://doi.org/10.1007/s11432-015-5442-3

Download citation


  • adaptive control
  • attitude consensus
  • multi-agent system
  • nonlinear distributed observer
  • parameter convergence
  • 010201


  • 自适应控制
  • 姿态控制
  • 多智能体系统
  • 非线性分布式观测器
  • 参数收敛