Skip to main content
Log in

A snake addressing scheme for phase change memory testing

面向相变存储器测试的蛇形寻址方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Phase change memory (PCM) is one of the most promising candidates for next generation nonvolatile memory. However, PCM suffers from a variety of faults due to its special device structure and operation mechanism. A snake addressing scheme is introduced into the test algorithms of PCM to reduce the test time and excite proximity disturb faults more effectively. The March test algorithm with the proposed snake addressing scheme is less complex than most traditional test algorithms. In addition to conventional faults, it is capable of covering disturb and parasitic faults. Moreover, when incorporated with the sneak path testing method, it is able to test the read fault, read recovery fault, incomplete program fault 0, and false write fault.

摘要

中文概要

相变存储器是一种新型非易失存储器。由于其特殊的器件特性和操作机制, 相变存储器可能发生多种类型的故障。本文设计了一种面向相变存储器测试的蛇形寻址方法, 可更加有效地激活相变存储器中的热串扰故障, 并利于减少测试时间。引入蛇形寻址方法的March测试算法, 可有效覆盖十种相变存储器故障类型, 且可将测试复杂度降低至7mn。引入蛇形寻址方法的潜通路测试算法可进而将测试复杂度降低至4.95mn, 并仍可覆盖十种相变存储器故障类型。

创新点

  1. 1、

    设计了一种面向相变存储器测试的蛇形寻址方法, 可更加有效的激活相变存储器的热串扰故障。

  2. 2、

    应用蛇形寻址方法, 设计了一种相变存储器阵列的March测试算法, 可有效覆盖十种相变存储器故障, 并将算法复杂度降至7mn。

  3. 3、

    应用蛇形寻址方法, 设计了一种相变存储器阵列的潜通路测试算法, 用4.95mn的算法复杂度代价有效覆盖十种相变存储器故障。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pirovano A, Lacaita A L, Benvenuti A, et al. Electronics switching in phase-change memories. IEEE Trans Electron Dev, 2004, 51: 452–459

    Article  Google Scholar 

  2. Kang S, Cho W Y, Cho B H, et al. A 0.1-μm 1.8V 256-Mb phase-change random access memory (PRAM) with 66-MHz synchronous burst-read operation. IEEE J Solid-State Circ, 2007, 42: 210–218

    Article  Google Scholar 

  3. Prall K, Ramaswanmy N, Kinney W, et al. An update on emerging memory: progress to 2Xnm. In: Proceedings of IEEE International Memory Workshop, Milan, 2012. 1–5

    Google Scholar 

  4. Mohammad M G. Fault model and test procedure for phase change memory. IET Comput Digital Tech, 2011, 5: 263–270

    Article  MathSciNet  Google Scholar 

  5. Pan X J, Cui X L, Zha J, et al. Modeling and test for parasitic resistance and capacitance defects in PCM. In: Proceedings of 12th Annual Non-Volatile Memory Technology Symposium (NVMTS), Singapore, 2012. 73–76

    Google Scholar 

  6. Zhang X, Wei Y, Lin X, et al. Critical parasitic capacitance in nano-scale phase-change memory cell. In: Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Chengdu, 2014. 18–20

    Google Scholar 

  7. Ielmini D, Lacaita A L, Mantegazza D. Recovery and drift dynamics of resistance and threshold voltages in phasechange memories. IEEE Trans Electron Dev, 2007, 54: 308–315

    Article  Google Scholar 

  8. Osada K, Kawahara T, Takemura R, et al. Phase change RAM operated with 1.5V CMOS as low cost embedded memory. In: Proceedings of IEEE International Conference on Custom Integrated Circuits, San Jose, 2005. 431–434

    Google Scholar 

  9. Pirovano A, Redaelli A, Pellizzer F, et al. Reliability study of phase-change nonvolatile memories. IEEE Trans Dev Mater Reliab, 2004, 4: 422–427

    Article  Google Scholar 

  10. Maimon J D, Hunt K K, Burcin L, et al. Chalcogenide memory array: characterization and radiation effects. IEEE Trans Nucl Sci, 2003, 50: 1878–1884

    Article  Google Scholar 

  11. Mohammad M G, Terkawi L, Albasman M. Phase change memory faults. In: Proceedings of 19th International Conference on VLSI Design. Held jointly with 5th International Conference on Embedded Systems and Design, Hyderabad, 2006. 6–6

    Google Scholar 

  12. Wong H S P, Raoux S, Kim S B, et al. Phase change memory. Proc IEEE, 2010, 98: 2201–2227

    Article  Google Scholar 

  13. Lacaita A L. Phase change memories: state-of-the-art, challenges and perspectives. Solid-State Electron, 2006, 50: 24–31

    Article  Google Scholar 

  14. Zhang Z, Xiao W, Park N, et al. Memory module-level testing and error behaviors for phase change memory. In: Proceedings of IEEE 30th International Conference on Computer Design (ICCD), Montreal, 2012. 358–363

    Google Scholar 

  15. Kannan S, Rajendran J, Karri R, et al. Sneak path testing of crossbar-based non-volatile random access memories. IEEE Trans Nanotechnol, 2013, 12: 413–426

    Article  Google Scholar 

  16. Wei Y, Lin X, Jia Y, et al. A SPICE model for phase-change memory (PCM) cell based on analytical conductivity model. J Semiconduct, 2012, 33: 1–5

    Google Scholar 

  17. van de Goor A J, Al-Ars Z. Functional memory faults: a formal notation and a taxonomy. In: Proceedings of IEEE 18th International VLSI Test Symposium (VTS), Montreal, 2000. 281–289

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaole Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Cheng, Z., Lee, C. et al. A snake addressing scheme for phase change memory testing. Sci. China Inf. Sci. 59, 102401 (2016). https://doi.org/10.1007/s11432-015-5437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5437-0

Keywords

关键词

Navigation