L-quantum spaces



In this paper, based on a complete residuated lattice L, we introduce the definitions of L-quantum spaces and continuous mappings. Then we establish an adjunction between the category of stratified L-quantum spaces and the opposite category of two-sided L-quantales. We also prove that the category of sober L-quantum spaces is dually equivalent to the category of spatial two-sided L-quantales.



  1. (1)

    本文将量化的思想应用于量子空间, 提出了L-量子空间概念, 它可以看作是非交换的L-拓扑空间。

  2. (2)

    给出了L-量子空间上连续映射的概念, 探讨了它的一些性质。

  3. (3)

    研究了L-量子空间的一些范畴性质, 比如 : L-量子空间范畴可以与双侧L-quantale范畴之间建立伴随。

  4. (4)

    得到了Sober L-量子空间范畴的一个等价范畴, 即空间式的双侧L-quantale范畴。

This is a preview of subscription content, access via your institution.


  1. 1

    Stone M H. The theory of representations for Boolean algebras. Trans American Math Soc, 1936, 40: 37–111

    MathSciNet  MATH  Google Scholar 

  2. 2

    Abramsky S. Domain theory in logical form. Ann Pure Appl Logic, 1991, 51: 1–77

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Isbell J. Atomless parts of spaces. Math Scand, 1972, 31: 5–32

    MathSciNet  MATH  Google Scholar 

  4. 4

    Yao W. An approach to fuzzy frames via fuzzy posets. Fuzzy Sets Syst, 2011, 166: 75–89

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Birkhoff G, von Neumann J. The logic of quantum mechanics. Ann Math, 1936, 379: 823–843

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Ying M S. A theory of computation based on quantum logic (I). Theor Comput Sci, 2005, 344: 134–207

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Ying M S. Quantum logic and automata theory. In: Dov G, Daniel L, Kurt E, eds. Handbook of Quantum Logic and Quantum Structures. North-Holland: Elsevier, 2007. 619–754

    Google Scholar 

  8. 8

    Shang Y, Lu X, Lu R Q. A theory of computation based on unsharp quantum logic: finite state automata and pushdown automata. Theor Comput Sci, 2012, 434: 53–86

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Mulvey C J. Suppl Rend Circ Mat Palermo, 1986, 12: 99–104

    MathSciNet  Google Scholar 

  10. 10

    Abramsky S, Vickers S. Quantale, observational logic and process semantics. Math Struct Comput Sci, 1993, 3: 161–227

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Resende P. Quantales, finite observations and strong bisimulation. Theor Comput Sci, 2001, 254: 95–149

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Li Y M, Li Zh H. Quantales and process semantics of bisimulation. Acta Mathe Sin Chinese Ser, 1999, 42: 313–320

    MathSciNet  MATH  Google Scholar 

  13. 13

    Girard J Y. Linear logic. Theor Comput Sci, 1987, 50: 1–102

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Yetter D. Quantales and noncommutative linear logic. J Symb Logic, 1990, 55: 41–64

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Parikh R. Some applications of topology to program semantics. Math Syst Theory, 1983, 16: 111–131

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Borceux F, Bossche G V. An essay on non-commutative topology. Topol Appl, 1989, 31: 203–223

    Article  MATH  Google Scholar 

  17. 17

    He W, Luo M K. Quantum spaces. Acta Math Sin English Ser, 2010, 26: 1323–1330

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Wang K Y. Some researches on fuzzy domains and fuzzy quantales. Dissertation for Ph.D. Degree. Xi’an: Shaanxi Normal University, 2012

    Google Scholar 

  19. 19

    Adámek J, Herrlich H, Strecker G E. Abstract and Concrete Categories. New York: Wiley, 1990

    Google Scholar 

  20. 20

    Bělohávek R. Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer Academic Publishers, 2002

    Google Scholar 

  21. 21

    Ward M, Dilworth R P. Residuated lattices. Trans American Math Soc, 1939, 45: 335–353

    MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Bělohávek R. Some properties of residuated lattices. Czechoslovak Math J, 2003, 53: 161–171

    MathSciNet  Article  Google Scholar 

  23. 23

    Hájek P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998

    Google Scholar 

  24. 24

    Fan L. A new approach to quantitative domain theory. Electron Notes Theor Comput Sci, 2001, 45: 77–87

    Article  MATH  Google Scholar 

  25. 25

    Goguen J A. L-fuzzy sets. J Math Anal Appl, 1967, 18: 145–174

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Zhang Q Y, Fan L. Continuity in quantitative domains. Fuzzy Sets Syst, 2005, 154: 118–131

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Zhang Q Y, Xie W X, Fan L. Fuzzy complete lattices. Fuzzy Sets Syst, 2009, 160: 2275–2291

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Rodabaugh S E. Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle U, Rodabaugh S E, eds. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, the Handbooks of Fuzzy Sets Series, vol.3. Boston, Dordrecht. London: Kluwer Academic Publishers, 1999. 91–116

    Google Scholar 

  29. 29

    Lai H L, Zhang D X. Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory. Int J Approx Reason, 2009, 50: 695–707

    MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Stubbe I. Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl Categ, 2006, 16: 283–306

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bin Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Ma, N. L-quantum spaces. Sci. China Inf. Sci. 59, 32201 (2016). https://doi.org/10.1007/s11432-015-5416-5

Download citation


  • L-quantum space
  • L-quantale
  • adjunction
  • stratified L-quantum space
  • spatial two-sided L-quantale


  • L-量子空间
  • L-quantale
  • 伴随
  • 满层L-量子空间
  • 空间式双侧 L-quantale