Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

L-quantum spaces

L-量子空间

Abstract

In this paper, based on a complete residuated lattice L, we introduce the definitions of L-quantum spaces and continuous mappings. Then we establish an adjunction between the category of stratified L-quantum spaces and the opposite category of two-sided L-quantales. We also prove that the category of sober L-quantum spaces is dually equivalent to the category of spatial two-sided L-quantales.

摘要

创新点

  1. (1)

    本文将量化的思想应用于量子空间, 提出了L-量子空间概念, 它可以看作是非交换的L-拓扑空间。

  2. (2)

    给出了L-量子空间上连续映射的概念, 探讨了它的一些性质。

  3. (3)

    研究了L-量子空间的一些范畴性质, 比如 : L-量子空间范畴可以与双侧L-quantale范畴之间建立伴随。

  4. (4)

    得到了Sober L-量子空间范畴的一个等价范畴, 即空间式的双侧L-quantale范畴。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Stone M H. The theory of representations for Boolean algebras. Trans American Math Soc, 1936, 40: 37–111

  2. 2

    Abramsky S. Domain theory in logical form. Ann Pure Appl Logic, 1991, 51: 1–77

  3. 3

    Isbell J. Atomless parts of spaces. Math Scand, 1972, 31: 5–32

  4. 4

    Yao W. An approach to fuzzy frames via fuzzy posets. Fuzzy Sets Syst, 2011, 166: 75–89

  5. 5

    Birkhoff G, von Neumann J. The logic of quantum mechanics. Ann Math, 1936, 379: 823–843

  6. 6

    Ying M S. A theory of computation based on quantum logic (I). Theor Comput Sci, 2005, 344: 134–207

  7. 7

    Ying M S. Quantum logic and automata theory. In: Dov G, Daniel L, Kurt E, eds. Handbook of Quantum Logic and Quantum Structures. North-Holland: Elsevier, 2007. 619–754

  8. 8

    Shang Y, Lu X, Lu R Q. A theory of computation based on unsharp quantum logic: finite state automata and pushdown automata. Theor Comput Sci, 2012, 434: 53–86

  9. 9

    Mulvey C J. Suppl Rend Circ Mat Palermo, 1986, 12: 99–104

  10. 10

    Abramsky S, Vickers S. Quantale, observational logic and process semantics. Math Struct Comput Sci, 1993, 3: 161–227

  11. 11

    Resende P. Quantales, finite observations and strong bisimulation. Theor Comput Sci, 2001, 254: 95–149

  12. 12

    Li Y M, Li Zh H. Quantales and process semantics of bisimulation. Acta Mathe Sin Chinese Ser, 1999, 42: 313–320

  13. 13

    Girard J Y. Linear logic. Theor Comput Sci, 1987, 50: 1–102

  14. 14

    Yetter D. Quantales and noncommutative linear logic. J Symb Logic, 1990, 55: 41–64

  15. 15

    Parikh R. Some applications of topology to program semantics. Math Syst Theory, 1983, 16: 111–131

  16. 16

    Borceux F, Bossche G V. An essay on non-commutative topology. Topol Appl, 1989, 31: 203–223

  17. 17

    He W, Luo M K. Quantum spaces. Acta Math Sin English Ser, 2010, 26: 1323–1330

  18. 18

    Wang K Y. Some researches on fuzzy domains and fuzzy quantales. Dissertation for Ph.D. Degree. Xi’an: Shaanxi Normal University, 2012

  19. 19

    Adámek J, Herrlich H, Strecker G E. Abstract and Concrete Categories. New York: Wiley, 1990

  20. 20

    Bělohávek R. Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer Academic Publishers, 2002

  21. 21

    Ward M, Dilworth R P. Residuated lattices. Trans American Math Soc, 1939, 45: 335–353

  22. 22

    Bělohávek R. Some properties of residuated lattices. Czechoslovak Math J, 2003, 53: 161–171

  23. 23

    Hájek P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998

  24. 24

    Fan L. A new approach to quantitative domain theory. Electron Notes Theor Comput Sci, 2001, 45: 77–87

  25. 25

    Goguen J A. L-fuzzy sets. J Math Anal Appl, 1967, 18: 145–174

  26. 26

    Zhang Q Y, Fan L. Continuity in quantitative domains. Fuzzy Sets Syst, 2005, 154: 118–131

  27. 27

    Zhang Q Y, Xie W X, Fan L. Fuzzy complete lattices. Fuzzy Sets Syst, 2009, 160: 2275–2291

  28. 28

    Rodabaugh S E. Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle U, Rodabaugh S E, eds. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, the Handbooks of Fuzzy Sets Series, vol.3. Boston, Dordrecht. London: Kluwer Academic Publishers, 1999. 91–116

  29. 29

    Lai H L, Zhang D X. Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory. Int J Approx Reason, 2009, 50: 695–707

  30. 30

    Stubbe I. Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl Categ, 2006, 16: 283–306

Download references

Author information

Correspondence to Bin Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Ma, N. L-quantum spaces. Sci. China Inf. Sci. 59, 32201 (2016). https://doi.org/10.1007/s11432-015-5416-5

Download citation

Keywords

  • L-quantum space
  • L-quantale
  • adjunction
  • stratified L-quantum space
  • spatial two-sided L-quantale

关键词

  • L-量子空间
  • L-quantale
  • 伴随
  • 满层L-量子空间
  • 空间式双侧 L-quantale