Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation

无线传感器网络中利用多层量化新息的分布式状态估计与数据融合方法

Abstract

Low energy consumption and limited power supply are significant factors for wireless sensor networks (WSNs); thus, distributed state estimation and data fusion with quantized innovation are explored. The universal features of practical WSNs are investigated, and a dynamic transmission strategy is introduced. Furthermore, quantization state estimation based on Bayesian theory is derived. Unlike previous algorithms suitable for processing scalar measurement, the proposed distributed data fusion algorithm is applicable to general vector measurement. Furthermore, the efficiency of the proposed dynamic transmission strategy is analyzed. It is concluded that the proposed algorithm is more efficient than previous methods, and its estimation accuracy comparable to that of the standard Kalman filtering, which is based on analog-amplitude vector measurement.

创新点

低能耗和有限供能是无线传感器网络的重要特点;因此,基于此特点,本文研究了基于量化新息的分布式状态估计和数据融合。首先,针对实际无线传感器网络的普遍特点进行了研究,并介绍了一个动态传输策略。进一步,推导出了基于贝叶斯理论的量化状态估计方法。不同于已有的方法适合处理标量量化测量,本文进一步给出了能够应用于向量量化测量的数据融合算法。并且,对于本文给出的动态传输策略进行了性能分析。通过性能分析和仿真实验可以看出,本文给出的量化估计算法比已有的方法更为有效,并且算法的估计精度接近基于非量化测量向量的标准卡尔曼滤波方法。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Masazade E, Niu R, Varshney P K. Dynamic bit allocation for object tracking in wireless sensor networks. IEEE Trans Signal Process, 2012, 60: 5048–5063

  2. 2

    Leng M, Tay W, Quek T, et al. Distributed local linear parameter estimation using Gaussian SPAWN. IEEE Trans Signal Process, 2015, 63: 244–257

  3. 3

    Braca P, Willett P, LePage K, et al. Bayesian tracking in underwater wireless sensor networks with port-starboard ambiguity. IEEE Trans Signal Process, 2014, 62: 1864–1878

  4. 4

    Soltani M, Hempel M, Sharif H. Data fusion utilization for optimizing large-scale wireless sensor networks. In: Proceedings of the IEEE International Conference on Communications, Sydney, 2014. 367–372

  5. 5

    Cheng C, Leung H, Maupin P. A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sens J, 2013, 13: 1622–1631

  6. 6

    Kreibich O, Neuzil J, Smid R. Quality-based multiple-sensor fusion in an industrial wireless sensor network for MCM. IEEE Trans Ind Electron, 2014, 61: 4903–4911

  7. 7

    Riberio A, Giannaki G B, Rounmeliotis S I. SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations. IEEE Trans Signal Process, 2006, 54: 4782–4795

  8. 8

    Msechu E J, Roumeliotis S I, Ribeiro A, et al. Decentralized quantized Kalman filtering with scalable communication cost. IEEE Trans Signal Process, 2008, 56: 3727–3741

  9. 9

    Msechu E J, Ribeiro A, Roumeliotis S I, et al. Distributed Kalman filtering based on quantized innovation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, 2008. 3293–3296

  10. 10

    You K, Xie L, Sun S, et al. Multiple-level quantized innovation Kalman filtering. In: Proceedings of the 17th IFAC World Congress, COEX, 2008. 1420–1425

  11. 11

    You K, Xie L, Sun S, et al. Quantized filtering of linear stochastic system. Trans Inst Meas Contr, 2011, 33: 683–689

  12. 12

    Ben-Israel A, Greville T. Generalized Inverses: Theory and Applications. 2nd ed. New York: Springer, 2003

  13. 13

    Bar-Shalom Y, Li X, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2001

Download references

Author information

Correspondence to Zhi Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, J. & Liu, L. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sci. China Inf. Sci. 59, 1–15 (2016). https://doi.org/10.1007/s11432-015-5415-6

Download citation

Keywords

  • data fusion
  • distributed state estimation
  • target tracking
  • Kalman filtering
  • quantization
  • wireless sensor networks

Keywords

  • 022316

关键词

  • 数据融合
  • 分布式状态估计
  • 目标跟踪
  • 卡尔曼滤波
  • 量化
  • 无线传感器网络