A beamforming design for weighted sidelobe power leakage minimization



In this paper, a beamforming scheme for minimizing the weighted sidelobe power leakage while maintaining the norm of the weight vector at unity is proposed. The proposed criterion is very flexible because weighting factors are added to the sidelobes in the object function, and the weighting factors can be adjusted according to any design purpose, e.g., to minimize the interference within a direction of arrival (DoA) range. To acquire the minimum sidelobe power leakage, we first express the sidelobe power through the sidelobe coefficient matrix. Afterwards, the minimization problem can be treated as the 2-norm minimization of the sidelobe coefficient matrix. The optimal weighting vector design is then derived by singular value decomposition (SVD). Simulation results show that the proposed beamformer can decrease the sidelobe power leakage and efficiently suppress interference with barely any increase in the sidelobes; moreover, this beamforming scheme provides good robustness in consideration of the DOA mismatch.



This is a preview of subscription content, access via your institution.


  1. 1

    Fei Z S, Ni J Q, Zhao D, et al. Ergodic secrecy rate of two-user MISO interference channels with statistical CSI. Sci China Inf Sci, 2014, 57: 102302

    Google Scholar 

  2. 2

    Chu H Y, Xu P P, Sun L, et al. Relay selection with feedback beamforming information through designed sector sweep report frame for mmWave WPANs. Sci China Inf Sci, 2014, 57: 082303

    Article  Google Scholar 

  3. 3

    Bellofiore S, Foutz J, Balanis C A, et al. Smart-antenna system for mobile communication networks. Part 2. Beamforming and network throughput. IEEE Antenn Propag Mag, 2002, 44: 106–114

    Article  Google Scholar 

  4. 4

    Xia Y J, Ren G L. A novel initial ranging algorithm for OFDMA systems using smart antenna. Sci China Inf Sci, 2014, 57: 082308

    Google Scholar 

  5. 5

    Gershman A B, Sidiropoulos N D, ShahbazPanahi S, et al. Convex optimization-based beamforming. IEEE Signal Process Mag, 2010, 27: 62–75

    Article  Google Scholar 

  6. 6

    Liu J, Li H, Himed B. Joint optimization of transmit and receive beamforming in active arrays. IEEE Signal Process Lett, 2014, 21: 39–42

    Article  Google Scholar 

  7. 7

    Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE, 1969, 57: 1408–1418

    Article  Google Scholar 

  8. 8

    Li J, Stoica P. Robust Adaptive Beamforming. New York: Wiley, 2006

    Google Scholar 

  9. 9

    Guerci J R. Space-Time Adaptive Processing for Radar. Norwood: Artech House, 2003

    Google Scholar 

  10. 10

    Chen C-Y, Vaidyanathan P P. Quadratically constrained beamforming robust against direction-of-arrival mismatch. IEEE Trans Signal Process, 2007, 55: 4139–4150

    MathSciNet  Article  Google Scholar 

  11. 11

    Li J Z, Guo F C, Jiang W L. Source localization and calibration using TDOA and FDOA measurements in the presence of sensor location uncertainty. Sci China Inf Sci, 2014, 57: 042315

    Google Scholar 

  12. 12

    Bell K L, Ephraim Y, Van Trees H L. A Bayesian approach to robust adaptive beamforming. IEEE Trans Signal Process, 2000, 48: 386–398

    Article  Google Scholar 

  13. 13

    Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming. IEEE Trans Acoust Speech Signal Process, 1987, 35: 1365–1376

    Article  Google Scholar 

  14. 14

    Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1988, 24: 397–401

    Article  Google Scholar 

  15. 15

    Chang L, Yeh C-C. Performance of DMI and eigenspace-based beamformers. IEEE Trans Antenn Propag, 1992, 40: 1336–1347

    Article  Google Scholar 

  16. 16

    Qin G D, Bao D, Liu G G, et al. Cross-correlation matrix Root-MUSIC algorithm for bistatic multiple-input multipleoutput radar. Sci China Inf Sci, 2015, 58: 020305

    Article  Google Scholar 

  17. 17

    ShahbazPanahi S, Gershman A B, Luo Z-Q, et al. Robust adaptive beamforming for general-rank signal models. IEEE Trans Signal Process, 2003, 51: 2257–2269

    Article  Google Scholar 

  18. 18

    Xing C, Ma S, Wu Y-C. On low complexity robust beamforming with positive semidefinite constraints. IEEE Trans Signal Process, 2009, 57: 4942–4945

    MathSciNet  Article  Google Scholar 

  19. 19

    Sadek M, Tarighat A, Sayed A H. A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Trans Wirel Commun, 2007, 6: 1711–1721

    Article  Google Scholar 

  20. 20

    Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans Signal Process, 2004, 52: 461–471

    MathSciNet  Article  Google Scholar 

  21. 21

    Bengtsson M. A pragmatic approach to multi-user spatial multiplexing. In: Proceedings of the Sensor Array and Multichannel Signal Processing Workshop, Rosslyn, 2002. 130–134

    Google Scholar 

  22. 22

    Chen R, Andews J G, Health R W. Multiuser space-time block coded MIMO with downlink precoding. In: Proceedings of the IEEE International Conference on Communications (ICC), Paris, 2004, 5: 2689–2693

    Google Scholar 

  23. 23

    Yoo T, Goldsmith A. Optimality of zero-forcing beamforming with multiuser diversity. In: Proceedings of the IEEE International Conference on communications (ICC), Seoul, 2005, 1: 542–546

    Google Scholar 

  24. 24

    Fei Z, Xing C, Li N, et al. Leakage-based distributed minimum-mean-square error beamforming for relay-assisted cloud radio access networks. IET Commun, 2014, 8: 1883–1891

    Article  Google Scholar 

  25. 25

    Sadek M, Tarighat A, Sayed A H. Active antenna selection in multiuser MIMO communications. IEEE Trans Signal Process, 2007, 55: 1498–1510

    MathSciNet  Article  Google Scholar 

  26. 26

    Liu Y, Wan Q. Sidelobe suppression for robust capon beamforming with mainlobe-to-sidelobe power ratio maximization. IEEE Antenn Wirel Propag Lett, 2012, 11: 1218–1221

    Article  Google Scholar 

  27. 27

    Golub G H, van Loan C F. Matrix Computations. 3rd ed. Baltimore: The Johns Hopkins University Press, 1996

    Google Scholar 

  28. 28

    Hogben L. Handbook of Linear Algebra. London: Chapman and Hall/CRC Press, 2007

    Google Scholar 

  29. 29

    Ma M, Huang X, Jiao B, et al. Optimal orthogonal precoding for power leakage suppression in DFT-based systems. IEEE Trans Commun, 2011, 59: 844–853

    Article  Google Scholar 

  30. 30

    Trump T, Ottersten B. Estimation of nominal direction of arrival and angular spread using an array of sensors. Signal Process, 1996, 50: 57–69

    Article  MATH  Google Scholar 

  31. 31

    Pedersen K I, Mogensen P E, Fleury B H. Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance. In: Proceedings of the 48th IEEE Vehicular Technology Conference (VTC 98), Ottawa, 1998, 2: 719–723

    Google Scholar 

  32. 32

    Besson O, Stoica P. Decoupled estimation of DOA and angular spread for a spatially distributed source. IEEE Trans Signal Process, 2000, 48: 1872–1882

    Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Meng Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Ma, M. & Jiao, B. A beamforming design for weighted sidelobe power leakage minimization. Sci. China Inf. Sci. 59, 062303 (2016). https://doi.org/10.1007/s11432-015-5393-8

Download citation


  • beamforming
  • weighted sidelobe power leakage
  • 2-norm
  • singular value decomposition (SVD)
  • direction of arrival (DoA)


  • 波束赋形
  • 加权旁瓣功率泄漏
  • 2-范数
  • 奇异值分解
  • 到达角