Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Robust capacity maximization transceiver design for MIMO OFDM systems

多天线正交频分复用系统中鲁棒性容量最大化的收发机设计

Abstract

In this paper, we investigated capacity maximization problem for Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing systems with imperfect channel state information (CSI). To the best of our knowledge, the considered problem is still an open problem. However, the transceiver designs for MIMO OFDM systems have been extensively studied. It seems nobody gives closed-form solutions for resource allocation for MIMO OFDM systems with statistical channel estimation errors up to date. In our work, based on practical channel estimation algorithm, the channel estimation errors are first derived and then the robust resource allocation problem has been formulated. The structure of the optimal robust precoder is first derived, based on which the optimization problem will be simplified significantly. Furthermore, based on the Lagrangian dual method, a robust power allocation algorithm is proposed. The proposed power allocation can be considered as a variant of water-filling solution named cluster water-filling solution. Finally, simulation results show that our proposed robust design outperforms the non-robust design in terms of channel capacity.

创新点

本文中,我们研究了在不完美信道状态信息下,多天线正交频分复用系统的容量最大化问题。这个问题仍然是一个开放性的课题,然而,我们进一步研究了多天线正交频分复用系统中的收发机设计问题。到目前为止,还没有相关的文献给出统计信道估计误差情况下,多天线正交频分复用系统的资源分配的闭式解。本文中,基于实际的信道估计算法,我们推导出了信道估计误差以及给出了资源分配问题的优化形式。我们首先给出了鲁棒性预编码的结构,,在此基础上,优化问题可以进一步被简化。另外,根据拉格朗日对偶算法,我们提出了一种鲁棒性的功率分配算法。提出的功率分配算法可以看做注水算法的一种变形,称为分簇注水算法。最后,仿真结果证明了我们提出的鲁棒性设计要优于非鲁棒性的设计。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Larsson E G, Stoica P. Space-Time Block Coding for Wireless Communications. Cambridge: Cambridge University Press, 2003

  2. 2

    Tse D, Viswanath P. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press. 2005

  3. 3

    Bolcskei H, Gesbert D, Papadias C B, et al. Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge: Cambridge University Press. 2006

  4. 4

    Luan T X, Gao F F, Zhang X D. Joint resource scheduling for relay-assisted broadband cognitive radio networks. IEEE Trans Wirel Commun, 2012, 11: 3090–3100

  5. 5

    Zhu F C, Gao F F, Yao M L, et al. Joint information-and Jamming-beamforming for physical layer security with full duplex base station. IEEE Trans Signal Process, 2014, 62: 6391–6401

  6. 6

    Zhang Z S, Long K P, Wang J P, et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun Surv Tut, 2014, 16: 513–537

  7. 7

    Zhang Z S, Long K P, Wang J P. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Trans Wirel Commun, 2013, 20: 36–42

  8. 8

    Dietrich F A. Robust Signal Processing for Wireless Communications. Foundations in Signal Processing, Communications and Networking. Berlin: Springer Press, 2007

  9. 9

    Zheng G, Wong K-K, Paulraj A, et al. Robust collaborative-relay beamforming. IEEE Trans Signal Process, 2009, 57: 3130–3143

  10. 10

    Sampath H, Stoica P, Paulraj A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Trans Commun, 2001, 49: 2198–2206

  11. 11

    Palomar D P, Cioffi J M, Lagunas M A. Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process, 2003, 51: 2381–2399

  12. 12

    Joham M, Utschick W, Nossek J A. Linear transmit processing in MIMO communications systems. IEEE Trans Signal Process, 2005, 53: 2700–2712

  13. 13

    Serbetli S, Yener A. Transceiver optimization for mutiuser MIMO systems. IEEE Trans Signal Process, 2004, 52: 214–226

  14. 14

    Zhang X, Palomar D P, Ottersten B. Statistically robust design of linear MIMO transceivers. IEEE Trans Signal Process, 2008, 56: 3678–3689

  15. 15

    Ding M H, Blostein S D. MIMO minimum total MSE transceiver design with imperfect CSI at both ends. IEEE Trans Signal Process, 2009, 57: 1141–1150

  16. 16

    Xing C W, Ma S D, Wu Y C, et al. Transceiver design for dual-hop nonregenerative MIMO-OFDM relay systems under channel uncertainties. IEEE Trans Signal Process, 2010, 58: 6325–6339

  17. 17

    Xing C W, Fei Z S, Ma S D. Maximum mutual information design for amplify-and-forward multi-hop MIMO relaying systems under channel uncertainties. In: Wireless Communications and Networking Conference (WCNC), Paris, 2012. 781–786

  18. 18

    Xing C W, Ma S D, Fei Z S. A general robust linear transceiver design for multi-hop amplify-and-forward MIMO relaying systems. IEEE Trans Signal Process, 2013, 61: 1196–1209

  19. 19

    Rey F, Lamarca M, Vazquez G. Robust power allocation algorithms for MIMO OFDM systems with imperfect CSI. IEEE Trans Signal Process, 2005, 53: 1070–1085

  20. 20

    Xing C W, Li D, Ma S D. Robust transceiver design for MIMO-OFDM systems based on cluster water-filling. IEEE Commun Lett, 2013, 17: 1451–1454

  21. 21

    Zhang Z S, Zhang W, Tellambura C. Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Trans Veh Technol, 2009, 58: 3447–3459

  22. 22

    Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River: Prentice Hall PTR, 1993

  23. 23

    Yuen C, Hochwald B M. Achieving near-capacity at low SNR on a multiple-antenna multiple-user channel. IEEE Trans Commun, 2009, 57: 69–74

  24. 24

    Bertsekas D P, Nedic A, Ozdaglar A E. Convex Analysis and Optimization. Nashua: Athena Scientific, 2003

  25. 25

    Conejo A J, Castillo E, Mínguez R, et al. Decomposition Techniques in Mathematical Programming. Berlin: Springer, 2006

  26. 26

    Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods. Nashua: Athena Scientific, 1996

  27. 27

    Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

  28. 28

    Bertsekas D P. Nonlinear Programming. Nashua: Athena Scientific, 1999

Download references

Author information

Correspondence to Chengwen Xing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Xing, C., Fei, Z. et al. Robust capacity maximization transceiver design for MIMO OFDM systems. Sci. China Inf. Sci. 59, 062301 (2016). https://doi.org/10.1007/s11432-015-5392-9

Download citation

Keywords

  • MIMO-OFDM
  • capacity maximization
  • water-filling
  • channel uncertainty
  • robust design

关键词

  • 多天线正交频分复用
  • 容量最大化
  • 注水
  • 信道不确定性
  • 鲁棒性设计