Adaptive robust Max-SLNR precoder for MU-MIMO-OFDM systems with imperfect CSI



The accuracy of channel state information (CSI) available at a base station (BS) has a direct impact on the performance of precoding in wideband multi-user multiple input, multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems and depends on many factors, including: the delay between estimation and beamforming at the BS (also called the CSI delay), Doppler spread, the channel estimation method used, the average transmit power of pilot symbols, and the average number of pilot symbols that must be estimated per channel parameter. In this paper, the coefficient of CSI error needed to adapt to fading channels is modeled as a function of Doppler spread, CSI delay, and signal-to-noise ratio (SNR). In terms of the Gaussian-Markov CSI error model, an adaptive robust maximum signal-to-leakage-and-noise ratio (Max- SLNR) precoder is designed to track the statistical parameters of CSI error. The Doppler spread and SNR can be obtained through real-time estimation based on orthogonal pilot patterns. Simulation results show that, compared to non-adaptive robust and non-robust precoders of Max-SLNR, the proposed adaptive robust Max- SLNR precoder performs much better in terms of bit error rate (BER). Moreover, as either the average number of training symbols per channel parameter or the average transmit power increases, the BER performance of the proposed precoder approaches that of a precoder with ideal CSI.



This is a preview of subscription content, access via your institution.


  1. 1

    Gesbert D, Hanly S, Huang H, et al. Multi-cell MIMO cooperative networks: a new look at interference. IEEE Sel Area Commun, 2010, 28: 1380–1408

    Article  Google Scholar 

  2. 2

    Chen R H, Geirhofer S, Sayana K, et al. Downlink MIMO in LTE-advanced: SU-MIMO vs MU-MIMO. IEEE Commun Mag, 2012, 50: 140–147

    Google Scholar 

  3. 3

    Karaa H, Adve R S, Tenenbaum A J. Linear precoding for multiuser MIMO-OFDM systems. In: IEEE International Conference on Communications (ICC), Glasgow, 2007. 2797–2802

    Google Scholar 

  4. 4

    Wang J, Xie X, Zhang Q. A way to reduce ICI for multi-user MIMO-OFDM system with precoding. In: IEEE International Conference on Advanced Computer Control, Singapore, 2009. 134–137

    Google Scholar 

  5. 5

    Shin Y, Kang T, Kim H. An efficient resource allocation for multiuser MIMO-OFDM systems with zero-forcing beamformer. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Commun, Athens, 2007. 1–5

    Google Scholar 

  6. 6

    Castanheira D, Silva A, Gameiro A. Linear and nonlinear precoding schemes for centralized multicell MIMO-OFDM systems. IEEE Wirel Pers Commun, 2013, 72: 759–777

    Article  Google Scholar 

  7. 7

    Sadek M, Aissa S. Leakage based precoding for multi-user MIMO-OFDM systems. IEEE Trans Wirel Commun, 2011, 10: 2428–2433

    Article  Google Scholar 

  8. 8

    Sung H, Lee S R, Lee I. Generalized channel inversion methods for multiuser MIMO systems. IEEE Trans Commun, 2009, 57: 3489–3499

    Article  Google Scholar 

  9. 9

    Liu W, Yang L L, Hanzo L. SVD-assisted multiuser transmitter and multiuser detector design for MIMO systems. IEEE Trans Veh Technol, 2009, 58: 1016–1021

    Article  Google Scholar 

  10. 10

    Mao J L, Gao J C, Liu Y A, et al. Robust multiuser MIMO scheduling algorithms with imperfect CSI. Sci China Inf Sci, 2012, 55: 815–826

    Article  MATH  Google Scholar 

  11. 11

    Zhou B, Jiang L, Zhang L, et al. Impact of imperfect channel state information on TDD downlink multiuser MIMO system. In: Proceedings of IEEE Wirel Commun and Networking Conference (WCNC), Cancun, 2011. 1823–1828

    Google Scholar 

  12. 12

    Wang C, Au E K S, Murch R D, et al. On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Trans Wirel Commun, 2007, 6: 805–810

    Article  Google Scholar 

  13. 13

    Sadek M, Tarighat A, Sayed A H. A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Trans Wirel Commun, 2007, 6: 1711–1721

    Article  Google Scholar 

  14. 14

    Chung P J, Du H. Robust SLNR downlink beamforming based on Markov’s inequality. In: IEEE International Conference on Communications (ICC), Ottawa, 2012. 3627–3631

    Google Scholar 

  15. 15

    Chung P J, Du H, Chen M. Robust transmit beamforming for multi-user MIMO systems using a probabilistic constraint approach. In: Signal Processing of 11th International Conference. Beijing: IEEE, 2012, 2: 1482–1485

    Google Scholar 

  16. 16

    Shen H, Xu W, Jin S, et al. Joint transmit and receive beamforming for multiuser MIMO downlinks with channel uncertainty. IEEE Trans Veh Technol, 2014, 63: 2319–2335

    Article  Google Scholar 

  17. 17

    Merline A, Thiruvengadam S J. Design of optimal linear precoder and decoder for MIMO channels with per antenna power constraint and imperfect CSI. IEEE Wirel Pers Commun, 2014, 75: 1251–1263

    Article  Google Scholar 

  18. 18

    Khalid F, Speidel J. Robust hybrid precoding for multiuser MIMO wireless communication systems. IEEE Trans Wirel Commun, 2014, 13: 1–11

    Article  Google Scholar 

  19. 19

    Tseng F, Wang Y, Hsu C, et al. Robust tomlinson-harashima precoder design with random vector quantization in MIMO systems. IEEE Commun Lett, 2014, 18: 265–268

    Article  Google Scholar 

  20. 20

    Sun Y, Wu M, Guo Q, et al. Robust non-linear precoder for multiuser MISO systems based on delay and channel quantization. Wirel Pers Commun, 2013, 72: 1993–2014

    Article  Google Scholar 

  21. 21

    Pan C, Su C, Chen M. Robust precoding for multicell MIMO downlink systems. In: IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, 2013. 1–6

    Google Scholar 

  22. 22

    Shu F, Lu Y Z, Chen Y. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy. Sci China Inf Sci, 2014, 57: 022312

    MATH  Google Scholar 

  23. 23

    Wang J, Wen O Y, Li S. Soft-output MMSE MIMO detector under imperfect channel estimation. In: IEEE Wirel Commun and Networking Conference, Las Vegas, 2008. 1334–1338

    Google Scholar 

  24. 24

    Cai J P, Song W T, Li Z. Doppler spread estimation for mobile OFDM systems in rayleigh fading channels. IEEE Trans Consum Electron, 2003, 49: 973–977

    Article  Google Scholar 

  25. 25

    Tepedelenlioglu C, Giannakis G. On velocity estimation and correlation properties of narrow-band mobile communication channels. IEEE Trans Veh Technol, 2001, 50: 1039–1052

    Article  Google Scholar 

  26. 26

    Ijaz A, Awoseyila A B, Evans B G. Low-complexity time-domain SNR estimation for OFDM systems. IEEE Electron Lett, 2011, 47: 1154–1156

    Article  Google Scholar 

  27. 27

    Li Y, Xu X, Zhang D D, et al. Optimal pilots design for frequency offsets and channel estimation in OFDM modulated single frequency networks. Sci China Inf Sci, 2014, 57: 042301

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Feng Shu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shu, F., Tong, J., You, X. et al. Adaptive robust Max-SLNR precoder for MU-MIMO-OFDM systems with imperfect CSI. Sci. China Inf. Sci. 59, 062302 (2016).

Download citation


  • multiuser MIMO
  • OFDM
  • Max-SLNR
  • adaptive
  • robust precoder
  • beamforming


  • 多用户MIMO
  • 正交频分复用
  • 最大化信泄噪比
  • 自适应
  • 稳健预编码器
  • 波束成形