Abstract
The unicost version of well-known set covering problem (SCP) is central to a wide variety of practical applications for which finding an optimal solution quickly is crucial. In this paper, we propose a new local searchbased algorithm for the unicost SCP which follows the general framework of the popular stochastic local search with a particular focus on the hyperedge selection strategy and weight diversity strategy. Specifically, a strategy as called hyperedge configuration checking strategy is proposed here to avoid the search trajectory which leads to local optima. Additionally, a new weight diversity strategy is proposed for the diversification of search results, by changing the weight of both covered and uncovered vertices in the current solution. The experimental results show that our algorithm significantly outperforms the state-of-the-art heuristic algorithm by one to two orders of magnitudes on the 85 classical instances. Also, our algorithm improves the current optimal solutions of 11 instances.
创新点
本文提出了一个基于随机局部搜索求解集合覆盖的算法. 在本文中, 提出一种超边配置检测策略用来避免陷入局部最优. 更重要地, 通过改变未覆盖和覆盖顶点的权值,本文设计了一种权值多样化策略用来得到更多地不同的解. 在经典的85个测试用例上, 实验结果给出本文设计的局部搜索算法比目前最好的启发式算法,能够使用更短的时间找到更好的候选解.
This is a preview of subscription content, access via your institution.
References
- 1
Karp R M. Reducibility among combinatorial problems. In: Complexity of Computer Computations. New York: Plenum Press, 1972. 85–103
- 2
Chakrabarty K. Test scheduling for core-based systems using mixed-integer linear programming. IEEE Trans Comput- Aided Des Integr Circuits Syst, 2000, 19: 1163–1174
- 3
van Bevern R. Towards optimal and expressive kernelization for d-Hitting Set. Comput Comb, 2012, 7434: 121–132
- 4
Ausiello G, D’Atri A, Protasi M. Structure preserving reductions among convex optimization problems. J Comput Syst Sci, 1980, 21: 136–153
- 5
Cai S W, Su K L, Luo C, et al. NuMVC: An efficient local search algorithm for minimum vertex cover. J Artif Intell Res, 2014, 46: 687–716
- 6
Dinur I, Safra S. On the hardness of approximating minimum vertex cover. Ann Math, 2005, 162: 439–485
- 7
Caprara A, Fischetti M, Toth P. A heuristic method for the set covering problem. Oper Res, 1999, 47: 730–743
- 8
Reiter R. A theory of diagnosis from first principles. Artif Intell, 1987, 32: 57–95
- 9
Zhao X F, Ouyang D T. Improved algorithms for deriving all minimal conflict sets in model-based diagnosis. In: Proceedings of the Intelligent Computing 3rd International Conference on Advanced Intelligent Computing Theories and Applications. Berlin: Springer, 2007. 157–166
- 10
Angel E, Bampis E, Gourvès L. On the minimum hitting set of bundles problem. Theor Comput Sci, 2009, 410: 4534–4542
- 11
Sellis T K. Multiple-query optimization. ACM Trans Database Syst, 1988, 13: 23–52
- 12
Avella P, Boccia M, Vasilyev I. Computational experience with general cutting planes for the Set Covering problem. Oper Res Lett, 2009, 37: 16–20
- 13
Björklund P, Värbrand P, Yuan D. A column generation method for spatial TDMA scheduling in ad hoc networks. Ad Hoc Netw, 2004, 2: 405–418
- 14
Hemazro T D, Jaumard B, Marcotte O. A column generation and branch-and-cut algorithm for the channel assignment problem. Comput Oper Res, 2008, 35: 1204–1226
- 15
Caprara A, Toth P, Fischetti M. Algorithms for the set covering problem. Ann Oper Res, 2000, 98: 353–371
- 16
Pereira J, Averbakh I. The robust set covering problem with interval data. Ann Oper Res, 2013, 207: 217–235
- 17
Yelbay S B, Birbil I, Bülbül K. The set covering problem revisited: an empirical study of the value of dual information. J Ind Manag Optimiz, 2015, 11: 575–594
- 18
Galinier P, Hertz A. Solution techniques for the large set covering problem. Discret Appl Mathematics, 2007, 155: 312–326
- 19
Yagiura M, Kishida M, Ibaraki T. A 3-flip neighborhood local search for the set covering problem. Eur J Oper Res, 2006, 172: 472–499
- 20
Kinney G W, Barnes J W, Colletti B W. A reactive tabu search algorithm with variable clustering for the unicost set covering problem. Int J Oper Res, 2007, 2: 156–172
- 21
Caserta M. Tabu search-based metaheuristic algorithm for large-scale set covering problems. Metaheuristics Progress Complex Syst Opt, 2007, 39: 43–63
- 22
Umetani S, Yagiura M. Relaxation heuristics for the set covering problem. J Oper Res Soc Jpn, 2007, 50: 350–375
- 23
Lan G, De Puy G W, Whitehouse G E. An effective and simple heuristic for the set covering problem. Eur J Oper Res, 2007, 176: 1387–1403
- 24
Bautista J, Pereira J. A GRASP algorithm to solve the unicost set covering problem. Comput Oper Res, 2007, 34: 3162–3173
- 25
Ablanedo-Rosas J H, Rego C. Surrogate constraint normalization for the set covering problem. Eur J Oper Res, 2010, 205: 540–551
- 26
Sundar S, Singh A. A hybrid heuristic for the set covering problem. Oper Res, 2012, 12: 345–365
- 27
Crawford B, Soto R, Cuesta R, et al. Application of the artificial bee colony algorithm for solving the set covering problem. Sci World J, 2014, 2014: 189164
- 28
Mulati M H, Constantino A A. Ant-Line: a line-oriented ACO algorithm for the set covering problem. In: Proceedings of the IEEE International Conference of the Chilean Computer Science Society, Curico, 2011. 265–274
- 29
Ren Z G, Feng Z R, Ke L J, et al. New ideas for applying ant colony optimization to the set covering problem. Comput Ind Eng, 2010, 58: 774–784
- 30
Beasley J E, Chu P C. A genetic algorithm for the set covering problem. Eur J Oper Res, 1996, 94: 392–404
- 31
Naji-Azimi Z, Toth P, Galli L. An electromagnetism metaheuristic for the unicost set covering problem. Eur J Oper Res, 2010, 205: 290–300
- 32
Glover F. Tabu search-part I. ORSA J Comput, 1989, 1: 190–206
- 33
Selman B, Kautz H A, Cohen B. Noise strategies for improving local search. In: Proceedings of National Conference on Artificial Intelligence, Seattle, 1994. 337–343
- 34
Cai S W, Su K L. Comprehensive score: towards efficient local search for sat with long clauses. In: Proceedings of the International Joint Conference on Artificial Intelligence, Beijing, 2013. 489–495
- 35
Cai S W, Su K L. Local search with configuration checking for SAT. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, 2011. 59–66
- 36
Luo C, Cai SW, Wu W, et al. Double configuration checking in stochastic local search for satisfiability. In: Proceedings of National Conference on Artificial Intelligence, Québec, 2014. 2703–2709
- 37
Cai S W, Su K L. Local search for boolean satisfiability with configuration checking and subscore. Artif Intell, 2013, 204: 75–98
- 38
Luo C, Cai S W, Su K L, et al. Clause states based configuration checking in local search for satisfiability. IEEE Trans cybern, 2014, 45: 1014–1027
- 39
Luo C, Cai S W, Wu W, et al. CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans Comput, 2015, 64: 1830–1843
- 40
Beasley J E. OR-Library: distributing test problems by electronic mail. J Oper Res Soc, 1990, 41: 1069–1072
- 41
Xu K, Boussemart F, Hemery F, et al. A simple model to generate hard satisfiable instances. In: Proceedings of the International Joint Conference on Artificial Intelligence, Edinburgh, 2005. 337–342
- 42
Selman B, Levesque H J, Mitchell D G. A new method for solving hard satisfiability problems. In: Proceedings of National Conference on Artificial Intelligence, San Jose, 1992. 440–446
- 43
Li C M, Huang W Q. Diversification and determinism in local search for satisfiability. Lect Notes Comput Sci, 2005, 3569: 158–172
- 44
Gent I P, Walsh T. Towards an understanding of hill-climbing procedures for SAT. In: Proceedings of National Conference on Artificial Intelligence, Washington, 1993. 28–33
- 45
Cai S W, Su K L, Sattar A. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif Intell, 2011, 175: 1672–1696
- 46
Xu K, Li W. Many hard examples in exact phase transitions. Theor Comput Sci, 2006, 355: 291–302
- 47
Xu K, Li W. Exact phase transitions in random constraint satisfaction problems. J Artif Intell Res, 2000, 12: 93–103
- 48
Xu K, Boussemart F, Hemery F, et al. Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif Intell, 2007, 171: 514–534
- 49
Gao J, Wang J N, Yin M H. Experimental analyses on phase transitions in compiling satisfiability problems. Sci China Inf Sci, 2015, 58: 032104
- 50
Huang P, Yin M H. An upper (lower) bound for Max (Min) CSP. Sci China Inf Sci, 2014, 57: 072109
- 51
Grossman T, Wool A. Computational experience with approximation algorithms for the set covering problem. Eur J Oper Res, 1997, 101: 81–92
Acknowledgments
This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61272208, 61370156, 61402196, 61503074, 61672261), Natural Science Foundation of Zhejiang Province (LY16F020004), and Program for New Century Excellent Talents in University (Grant No. NCET-13-0724). The authors of this paper express sincere gratitude to all the anonymous reviewers for their hard work.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Y., Ouyang, D., Zhang, L. et al. A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci. China Inf. Sci. 60, 062103 (2017). https://doi.org/10.1007/s11432-015-5377-8
Received:
Accepted:
Published:
Keywords
- unicost set covering problem
- hyperedge configuration checking
- local search
- weight diversity strategy
- hyperedge selection strategy
关键词
- 集合覆盖问题
- 超边配置检测
- 局部搜索
- 权值多样化策略
- 超边选择策略