Skip to main content
Log in

Rotated neighbor learning-based auto-configured evolutionary algorithm

基于旋转邻域学习的自配置进化算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

More and more evolutionary operators have been integrated and manually configured together to solve wider range of problems. Considering the very limited progress made on the automatic configuration of evolutionary algorithms (EAs), a rotated neighbor learning-based auto-configured evolutionary algorithm (RNLACEA) is presented. In this framework, multiple EAs are combined as candidates and automatically screened for different scenarios with a rotated neighbor structure. According to a ranking record and a group of constraints, the algorithms can be better scheduled to improve the searching efficiency and accelerate the searching pace. Experimental studies based on 14 classical EAs and 22 typical benchmark problems demonstrate that RNLACEA outperforms other six representative auto-adaptive EAs and has high scalability and robustness in solving different kinds of numerical optimization problems.

摘要

创新点

本文提出了一种旋转邻域学习的自配置进化算法。 通过多种进化算子的集合形成底层备选池, 我们在进化个体基础上建立了一种新型旋转邻域结构, 使得个体能在O(nlogn)时间内在种群内传播其自身进化信息和所使用的算子记录。 同时, 通过与邻域个体的信息比较和算子排列记录, 个体能自主并快速地自动选取当前所需的进化操作, 最终提升进化算法整体的搜索能力和扩展性。 大量基于数值优化标准函数的实验充分证明了本文所设计的自配置进化算法的有效性、 鲁棒性及其扩展性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Osman I H, Kelly J P. Meta-heuristics: an overview. In: Meta-Heuristics. Berlin: Springer, 1996. 1–21

    Book  MATH  Google Scholar 

  2. Kochenberger G A. Handbook in Metaheuristics. Berlin: Springer, 2003

    MATH  Google Scholar 

  3. Talbi E G. Metaheuristics: From Design to Implementation. Hoboken: John Wiley & Sons, 2009

    Book  MATH  Google Scholar 

  4. Paz A, Moran S. Non deterministic polynomial optimization problems and their approximations. Theoretical Comput Sci, 1981, 15: 251–277

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu Y, Yao X, Zhou Z H. On the approximation ability of evolutionary optimization with application to minimum set cover. Artif Intell, 2012. 180–181: 20–33

    Google Scholar 

  6. Qian C, Yu Y, Zhou Z H. An analysis on recombination in multi-objective evolutionary optimization. Artif Intell, 2013, 204: 99–119

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang X S. Engineering Optimization: an Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010

    Book  Google Scholar 

  8. Wang Y, Li B, Yuan B. Hybrid of comprehensive learning particle swarm optimization and SQP algorithm for large scale economic load dispatch optimization of power system. Sci China Inf Sci, 2010, 53: 1566–1573

    Article  MathSciNet  Google Scholar 

  9. Zhang X J, Guan X M, Hwang I, et al. A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary. Sci China Inf Sci, 2013, 56: 128202

    Google Scholar 

  10. Burke E K, Kendall G, Newall J, et al. Hyper-heuristics: an emerging direction in modern search technology. In: International Series in Operations Research and Management Science. Dordrecht: Kluwer Academic Publishers, 2003. 457–474

    Chapter  Google Scholar 

  11. Burke E K, Hyde M, Kendall G, et al. A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics. Beilin: Springer, 2010. 449–468

    Chapter  Google Scholar 

  12. Burke E K, McCollum B, Meisels A, et al. A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res, 2007, 176: 177–192

    Article  MathSciNet  MATH  Google Scholar 

  13. Qu R, Burke E K. Hybridizations within a graph based hyper-heuristic framework for university timetabling problems. J Oper Res Soc, 2009, 60: 1273–1285

    Article  MATH  Google Scholar 

  14. Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 1989, 826: 1989

    Google Scholar 

  15. Ong Y S, Keane A J. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput, 2004, 8: 99–110

    Article  Google Scholar 

  16. Ong Y S, Lim M H, Zhu N, et al. Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2006, 36: 141–152

    Google Scholar 

  17. Vrugt J A, Robinson B A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc National Academy Sci, 2007, 104: 708–711

    Article  Google Scholar 

  18. Vrugt J A, Robinson B A, Hyman J M. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evolut Comput, 2009, 13: 243–259

    Article  Google Scholar 

  19. Tao F, Laili Y J, Liu Y, et al. Concept, principle and application of dynamic configuration for intelligent algorithms. IEEE Syst J, 2014, 8: 28–42

    Article  Google Scholar 

  20. Bechikh S, Said L B, Ghédira K. Negotiating decision Makers’ reference points for group preference-based evolutionary multi-objective optimization. In: Proceedings of the 11th IEEE International Conference on Hybrid Intelligent Systems, Malaysia, 2011. 377–382

    Google Scholar 

  21. Bechikh S, Said L B, Ghédira K. Group preference-based evolutionary multi-objective optimization with non-equally important decision makers: application to the portfolio selection problem. Int J Comput Inf Syst Indus Manag Appl, 2013, 5: 278–288

    Google Scholar 

  22. Krasnogor N, Simth J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evolut Comput, 2005, 9: 474–488

    Article  Google Scholar 

  23. Schwefel H P. Evolution and Optimum Seeking. Hoboken: John Wiley & Sons, 1995

    MATH  Google Scholar 

  24. Nguyen Q H, Ong Y S, Krasnogor N. A study on the design issues of memetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007. 2390–2397

    Chapter  Google Scholar 

  25. Le M N, Ong Y S, Jin Y, et al. Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput, 2009, 1: 175–190

    Article  Google Scholar 

  26. Sudholt D. The impact of parametrization in memetic evolutionary algorithms. Theor Comput Sci, 2009, 410: 2511–2528

    Article  MathSciNet  MATH  Google Scholar 

  27. Tang J, Lim M H, Ong Y S. Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput, 2007, 11: 873–888

    Article  Google Scholar 

  28. Liu D, Tan K C, Goh C K, et al. A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 42–50

    Article  Google Scholar 

  29. Caponio A, Neri F, Tirronen V. Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput, 2009, 13: 811–831

    Article  Google Scholar 

  30. Gong M G, Jiao L C, Liu F, et al. Memetic computation based on regulation between neural and immune systems: the framework and a case study. Sci China Inf Sci, 2010, 53: 1519–1527

    Article  Google Scholar 

  31. Smith J E. Coevolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 6–17

    Article  Google Scholar 

  32. Lacca G, Neri F, Mininno E, et al. Ockham’s razor in memetic computing: three stage optimal memetic exploration. Inf Sci, 2012, 188: 17–43

    Article  Google Scholar 

  33. Meuth R, Lim M H, Ong Y S, et al. A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput, 2009, 1: 85–100

    Article  Google Scholar 

  34. Hadka D, Reed P. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolut Comput, 2012, 20: 423–452

    Article  Google Scholar 

  35. Hadka D, Reed P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evolut Comput, 2013, 21: 231–259

    Article  Google Scholar 

  36. Grobler J, Engelbrecht A P, Kendall G, et al. Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Barcelona, 2010. 1–8

    Chapter  Google Scholar 

  37. Peng F, Tang K, Chen G, et al. Population-based algorithm portfolios for numerical optimization. IEEE Trans Evolut Comput, 2010, 14: 782–800

    Article  Google Scholar 

  38. Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2011, 41: 397–413

    Article  Google Scholar 

  39. Elsayed S M, Sarker R A, Essam D L. An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf, 2013, 9: 89–99

    Article  Google Scholar 

  40. Zhang X, Srinivasan R, Liew M V. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrol Process, 2010, 24: 955–969

    Article  Google Scholar 

  41. Dane J H, Vrugt J A, Unsal E. Soil hydraulic functions determined from measurements of air permeability, capillary modeling, and high-dimensional parameter estimation. Vadose Zone J, 2011, 10: 459–465

    Article  Google Scholar 

  42. Burke E K, Kendall G, Soubeiga E. A tabu-search hyperheuristic for timetabling and rostering. J Heuristics, 2003, 9: 451–470

    Article  Google Scholar 

  43. Beckers M L M, Derks E P P A, Melssen W J, et al. Using genetic algorithms for conformational analysis of biomacromolecules. Comput Chem, 1996, 20: 449–457

    Article  Google Scholar 

  44. Fukuyama Y, Chiang H D. A parallel genetic algorithm for generation expansion planning. IEEE Trans Power Syst, 1996, 11: 955–961

    Article  Google Scholar 

  45. Tao F, Laili Y J, Xu L, et al. FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf, 2013, 9: 2023–2033

    Article  Google Scholar 

  46. Matsumura T, Nakamura M, Okech J, et al. A parallel and distributed genetic algorithm on loosely-coupled multiprocessor systems. IEICE Trans Fund Electr Commun Comput Sci, 1998, 81: 540–546

    Google Scholar 

  47. Lourenco H R, Martin O C, Stutzle T. Iterated local search. In: Handbook of Metaheuristics. Beilin: Springer, 2003. 320–353

    Google Scholar 

  48. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optimiz, 2007, 39: 459–471

    Article  MathSciNet  MATH  Google Scholar 

  49. Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76: 60–68

    Article  Google Scholar 

  50. Yang X S, Deb S. Cuckoo search via levy flights. In: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, 2009. 210–214

    Chapter  Google Scholar 

  51. Mladenovic N, Hansen P. Variable neighborhood search. Comput Oper Res, 1997, 24: 1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  52. Feo T A, Resende M G. Greedy randomized adaptive search procedures. J Global Optim, 1995, 6: 109–133

    Article  MathSciNet  MATH  Google Scholar 

  53. Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur J Oper Res, 2008, 185: 1155–1173

    Article  MathSciNet  MATH  Google Scholar 

  54. Hu M, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput, 2013, 17: 705–720

    Article  Google Scholar 

  55. Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. KanGAL Report 2005005. 2005

    Google Scholar 

  56. Wineberg M, Christensen S. An introduction to statistical analysis for evolutionary computation. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. New York: ACM, 2008. 2639–2664

    Google Scholar 

  57. Tao F, Feng Y, Zhang L, et al. CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl Soft Comput, 2014, 19: 264–279

    Article  Google Scholar 

  58. Tao F, Cheng Y, Xu L, et al. CCIoT-CMfg: cloud computing and Internet of things based cloud manufacturing service system. IEEE Trans Ind Inf, 2014, 10: 1435–1442

    Article  Google Scholar 

  59. Tao F, Zuo Y, Xu L, et al. IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf, 2014, 10: 1547–1557

    Article  Google Scholar 

  60. Tao F, Zuo Y, Xu L, et al. Internet of things and BOM based life cycle assessment of energy-saving and emissionreduction of product. IEEE Trans Ind Inf, 2014, 10: 1252–1264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laili, Y., Zhang, L., Tao, F. et al. Rotated neighbor learning-based auto-configured evolutionary algorithm. Sci. China Inf. Sci. 59, 052101 (2016). https://doi.org/10.1007/s11432-015-5372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5372-0

Keywords

关键词

Navigation