Abstract
More and more evolutionary operators have been integrated and manually configured together to solve wider range of problems. Considering the very limited progress made on the automatic configuration of evolutionary algorithms (EAs), a rotated neighbor learning-based auto-configured evolutionary algorithm (RNLACEA) is presented. In this framework, multiple EAs are combined as candidates and automatically screened for different scenarios with a rotated neighbor structure. According to a ranking record and a group of constraints, the algorithms can be better scheduled to improve the searching efficiency and accelerate the searching pace. Experimental studies based on 14 classical EAs and 22 typical benchmark problems demonstrate that RNLACEA outperforms other six representative auto-adaptive EAs and has high scalability and robustness in solving different kinds of numerical optimization problems.
摘要
创新点
本文提出了一种旋转邻域学习的自配置进化算法。 通过多种进化算子的集合形成底层备选池, 我们在进化个体基础上建立了一种新型旋转邻域结构, 使得个体能在O(nlogn)时间内在种群内传播其自身进化信息和所使用的算子记录。 同时, 通过与邻域个体的信息比较和算子排列记录, 个体能自主并快速地自动选取当前所需的进化操作, 最终提升进化算法整体的搜索能力和扩展性。 大量基于数值优化标准函数的实验充分证明了本文所设计的自配置进化算法的有效性、 鲁棒性及其扩展性。
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Osman I H, Kelly J P. Meta-heuristics: an overview. In: Meta-Heuristics. Berlin: Springer, 1996. 1–21
Kochenberger G A. Handbook in Metaheuristics. Berlin: Springer, 2003
Talbi E G. Metaheuristics: From Design to Implementation. Hoboken: John Wiley & Sons, 2009
Paz A, Moran S. Non deterministic polynomial optimization problems and their approximations. Theoretical Comput Sci, 1981, 15: 251–277
Yu Y, Yao X, Zhou Z H. On the approximation ability of evolutionary optimization with application to minimum set cover. Artif Intell, 2012. 180–181: 20–33
Qian C, Yu Y, Zhou Z H. An analysis on recombination in multi-objective evolutionary optimization. Artif Intell, 2013, 204: 99–119
Yang X S. Engineering Optimization: an Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010
Wang Y, Li B, Yuan B. Hybrid of comprehensive learning particle swarm optimization and SQP algorithm for large scale economic load dispatch optimization of power system. Sci China Inf Sci, 2010, 53: 1566–1573
Zhang X J, Guan X M, Hwang I, et al. A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary. Sci China Inf Sci, 2013, 56: 128202
Burke E K, Kendall G, Newall J, et al. Hyper-heuristics: an emerging direction in modern search technology. In: International Series in Operations Research and Management Science. Dordrecht: Kluwer Academic Publishers, 2003. 457–474
Burke E K, Hyde M, Kendall G, et al. A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics. Beilin: Springer, 2010. 449–468
Burke E K, McCollum B, Meisels A, et al. A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res, 2007, 176: 177–192
Qu R, Burke E K. Hybridizations within a graph based hyper-heuristic framework for university timetabling problems. J Oper Res Soc, 2009, 60: 1273–1285
Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 1989, 826: 1989
Ong Y S, Keane A J. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput, 2004, 8: 99–110
Ong Y S, Lim M H, Zhu N, et al. Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2006, 36: 141–152
Vrugt J A, Robinson B A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc National Academy Sci, 2007, 104: 708–711
Vrugt J A, Robinson B A, Hyman J M. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evolut Comput, 2009, 13: 243–259
Tao F, Laili Y J, Liu Y, et al. Concept, principle and application of dynamic configuration for intelligent algorithms. IEEE Syst J, 2014, 8: 28–42
Bechikh S, Said L B, Ghédira K. Negotiating decision Makers’ reference points for group preference-based evolutionary multi-objective optimization. In: Proceedings of the 11th IEEE International Conference on Hybrid Intelligent Systems, Malaysia, 2011. 377–382
Bechikh S, Said L B, Ghédira K. Group preference-based evolutionary multi-objective optimization with non-equally important decision makers: application to the portfolio selection problem. Int J Comput Inf Syst Indus Manag Appl, 2013, 5: 278–288
Krasnogor N, Simth J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evolut Comput, 2005, 9: 474–488
Schwefel H P. Evolution and Optimum Seeking. Hoboken: John Wiley & Sons, 1995
Nguyen Q H, Ong Y S, Krasnogor N. A study on the design issues of memetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007. 2390–2397
Le M N, Ong Y S, Jin Y, et al. Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput, 2009, 1: 175–190
Sudholt D. The impact of parametrization in memetic evolutionary algorithms. Theor Comput Sci, 2009, 410: 2511–2528
Tang J, Lim M H, Ong Y S. Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput, 2007, 11: 873–888
Liu D, Tan K C, Goh C K, et al. A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 42–50
Caponio A, Neri F, Tirronen V. Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput, 2009, 13: 811–831
Gong M G, Jiao L C, Liu F, et al. Memetic computation based on regulation between neural and immune systems: the framework and a case study. Sci China Inf Sci, 2010, 53: 1519–1527
Smith J E. Coevolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 6–17
Lacca G, Neri F, Mininno E, et al. Ockham’s razor in memetic computing: three stage optimal memetic exploration. Inf Sci, 2012, 188: 17–43
Meuth R, Lim M H, Ong Y S, et al. A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput, 2009, 1: 85–100
Hadka D, Reed P. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolut Comput, 2012, 20: 423–452
Hadka D, Reed P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evolut Comput, 2013, 21: 231–259
Grobler J, Engelbrecht A P, Kendall G, et al. Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Barcelona, 2010. 1–8
Peng F, Tang K, Chen G, et al. Population-based algorithm portfolios for numerical optimization. IEEE Trans Evolut Comput, 2010, 14: 782–800
Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2011, 41: 397–413
Elsayed S M, Sarker R A, Essam D L. An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf, 2013, 9: 89–99
Zhang X, Srinivasan R, Liew M V. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrol Process, 2010, 24: 955–969
Dane J H, Vrugt J A, Unsal E. Soil hydraulic functions determined from measurements of air permeability, capillary modeling, and high-dimensional parameter estimation. Vadose Zone J, 2011, 10: 459–465
Burke E K, Kendall G, Soubeiga E. A tabu-search hyperheuristic for timetabling and rostering. J Heuristics, 2003, 9: 451–470
Beckers M L M, Derks E P P A, Melssen W J, et al. Using genetic algorithms for conformational analysis of biomacromolecules. Comput Chem, 1996, 20: 449–457
Fukuyama Y, Chiang H D. A parallel genetic algorithm for generation expansion planning. IEEE Trans Power Syst, 1996, 11: 955–961
Tao F, Laili Y J, Xu L, et al. FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf, 2013, 9: 2023–2033
Matsumura T, Nakamura M, Okech J, et al. A parallel and distributed genetic algorithm on loosely-coupled multiprocessor systems. IEICE Trans Fund Electr Commun Comput Sci, 1998, 81: 540–546
Lourenco H R, Martin O C, Stutzle T. Iterated local search. In: Handbook of Metaheuristics. Beilin: Springer, 2003. 320–353
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optimiz, 2007, 39: 459–471
Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76: 60–68
Yang X S, Deb S. Cuckoo search via levy flights. In: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, 2009. 210–214
Mladenovic N, Hansen P. Variable neighborhood search. Comput Oper Res, 1997, 24: 1097–1100
Feo T A, Resende M G. Greedy randomized adaptive search procedures. J Global Optim, 1995, 6: 109–133
Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur J Oper Res, 2008, 185: 1155–1173
Hu M, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput, 2013, 17: 705–720
Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. KanGAL Report 2005005. 2005
Wineberg M, Christensen S. An introduction to statistical analysis for evolutionary computation. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. New York: ACM, 2008. 2639–2664
Tao F, Feng Y, Zhang L, et al. CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl Soft Comput, 2014, 19: 264–279
Tao F, Cheng Y, Xu L, et al. CCIoT-CMfg: cloud computing and Internet of things based cloud manufacturing service system. IEEE Trans Ind Inf, 2014, 10: 1435–1442
Tao F, Zuo Y, Xu L, et al. IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf, 2014, 10: 1547–1557
Tao F, Zuo Y, Xu L, et al. Internet of things and BOM based life cycle assessment of energy-saving and emissionreduction of product. IEEE Trans Ind Inf, 2014, 10: 1252–1264
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Laili, Y., Zhang, L., Tao, F. et al. Rotated neighbor learning-based auto-configured evolutionary algorithm. Sci. China Inf. Sci. 59, 052101 (2016). https://doi.org/10.1007/s11432-015-5372-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-015-5372-0
Keywords
- multiple evolutionary algorithms
- algorithm auto-configuration
- rotated neighbor structure
- hyperheuristic
- numerical optimization