Advertisement

Rotated neighbor learning-based auto-configured evolutionary algorithm

  • Yuanjun Laili
  • Lin ZhangEmail author
  • Fei Tao
  • Pingchuan Ma
Research Paper

Abstract

More and more evolutionary operators have been integrated and manually configured together to solve wider range of problems. Considering the very limited progress made on the automatic configuration of evolutionary algorithms (EAs), a rotated neighbor learning-based auto-configured evolutionary algorithm (RNLACEA) is presented. In this framework, multiple EAs are combined as candidates and automatically screened for different scenarios with a rotated neighbor structure. According to a ranking record and a group of constraints, the algorithms can be better scheduled to improve the searching efficiency and accelerate the searching pace. Experimental studies based on 14 classical EAs and 22 typical benchmark problems demonstrate that RNLACEA outperforms other six representative auto-adaptive EAs and has high scalability and robustness in solving different kinds of numerical optimization problems.

Keywords

multiple evolutionary algorithms algorithm auto-configuration rotated neighbor structure hyperheuristic numerical optimization 

基于旋转邻域学习的自配置进化算法

摘要

创新点

本文提出了一种旋转邻域学习的自配置进化算法。 通过多种进化算子的集合形成底层备选池, 我们在进化个体基础上建立了一种新型旋转邻域结构, 使得个体能在O(nlogn)时间内在种群内传播其自身进化信息和所使用的算子记录。 同时, 通过与邻域个体的信息比较和算子排列记录, 个体能自主并快速地自动选取当前所需的进化操作, 最终提升进化算法整体的搜索能力和扩展性。 大量基于数值优化标准函数的实验充分证明了本文所设计的自配置进化算法的有效性、 鲁棒性及其扩展性。

关键词

多进化算法 算法自动配置 旋转领域结构 超启发 数值优化 

References

  1. 1.
    Osman I H, Kelly J P. Meta-heuristics: an overview. In: Meta-Heuristics. Berlin: Springer, 1996. 1–21CrossRefzbMATHGoogle Scholar
  2. 2.
    Kochenberger G A. Handbook in Metaheuristics. Berlin: Springer, 2003zbMATHGoogle Scholar
  3. 3.
    Talbi E G. Metaheuristics: From Design to Implementation. Hoboken: John Wiley & Sons, 2009CrossRefzbMATHGoogle Scholar
  4. 4.
    Paz A, Moran S. Non deterministic polynomial optimization problems and their approximations. Theoretical Comput Sci, 1981, 15: 251–277MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yu Y, Yao X, Zhou Z H. On the approximation ability of evolutionary optimization with application to minimum set cover. Artif Intell, 2012. 180–181: 20–33Google Scholar
  6. 6.
    Qian C, Yu Y, Zhou Z H. An analysis on recombination in multi-objective evolutionary optimization. Artif Intell, 2013, 204: 99–119MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Yang X S. Engineering Optimization: an Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010CrossRefGoogle Scholar
  8. 8.
    Wang Y, Li B, Yuan B. Hybrid of comprehensive learning particle swarm optimization and SQP algorithm for large scale economic load dispatch optimization of power system. Sci China Inf Sci, 2010, 53: 1566–1573MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang X J, Guan X M, Hwang I, et al. A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary. Sci China Inf Sci, 2013, 56: 128202Google Scholar
  10. 10.
    Burke E K, Kendall G, Newall J, et al. Hyper-heuristics: an emerging direction in modern search technology. In: International Series in Operations Research and Management Science. Dordrecht: Kluwer Academic Publishers, 2003. 457–474CrossRefGoogle Scholar
  11. 11.
    Burke E K, Hyde M, Kendall G, et al. A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics. Beilin: Springer, 2010. 449–468CrossRefGoogle Scholar
  12. 12.
    Burke E K, McCollum B, Meisels A, et al. A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res, 2007, 176: 177–192MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Qu R, Burke E K. Hybridizations within a graph based hyper-heuristic framework for university timetabling problems. J Oper Res Soc, 2009, 60: 1273–1285CrossRefzbMATHGoogle Scholar
  14. 14.
    Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 1989, 826: 1989Google Scholar
  15. 15.
    Ong Y S, Keane A J. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput, 2004, 8: 99–110CrossRefGoogle Scholar
  16. 16.
    Ong Y S, Lim M H, Zhu N, et al. Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2006, 36: 141–152Google Scholar
  17. 17.
    Vrugt J A, Robinson B A. Improved evolutionary optimization from genetically adaptive multimethod search. Proc National Academy Sci, 2007, 104: 708–711CrossRefGoogle Scholar
  18. 18.
    Vrugt J A, Robinson B A, Hyman J M. Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evolut Comput, 2009, 13: 243–259CrossRefGoogle Scholar
  19. 19.
    Tao F, Laili Y J, Liu Y, et al. Concept, principle and application of dynamic configuration for intelligent algorithms. IEEE Syst J, 2014, 8: 28–42CrossRefGoogle Scholar
  20. 20.
    Bechikh S, Said L B, Ghédira K. Negotiating decision Makers’ reference points for group preference-based evolutionary multi-objective optimization. In: Proceedings of the 11th IEEE International Conference on Hybrid Intelligent Systems, Malaysia, 2011. 377–382Google Scholar
  21. 21.
    Bechikh S, Said L B, Ghédira K. Group preference-based evolutionary multi-objective optimization with non-equally important decision makers: application to the portfolio selection problem. Int J Comput Inf Syst Indus Manag Appl, 2013, 5: 278–288Google Scholar
  22. 22.
    Krasnogor N, Simth J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evolut Comput, 2005, 9: 474–488CrossRefGoogle Scholar
  23. 23.
    Schwefel H P. Evolution and Optimum Seeking. Hoboken: John Wiley & Sons, 1995zbMATHGoogle Scholar
  24. 24.
    Nguyen Q H, Ong Y S, Krasnogor N. A study on the design issues of memetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007. 2390–2397CrossRefGoogle Scholar
  25. 25.
    Le M N, Ong Y S, Jin Y, et al. Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput, 2009, 1: 175–190CrossRefGoogle Scholar
  26. 26.
    Sudholt D. The impact of parametrization in memetic evolutionary algorithms. Theor Comput Sci, 2009, 410: 2511–2528MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tang J, Lim M H, Ong Y S. Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput, 2007, 11: 873–888CrossRefGoogle Scholar
  28. 28.
    Liu D, Tan K C, Goh C K, et al. A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 42–50CrossRefGoogle Scholar
  29. 29.
    Caponio A, Neri F, Tirronen V. Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput, 2009, 13: 811–831CrossRefGoogle Scholar
  30. 30.
    Gong M G, Jiao L C, Liu F, et al. Memetic computation based on regulation between neural and immune systems: the framework and a case study. Sci China Inf Sci, 2010, 53: 1519–1527CrossRefGoogle Scholar
  31. 31.
    Smith J E. Coevolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2007, 37: 6–17CrossRefGoogle Scholar
  32. 32.
    Lacca G, Neri F, Mininno E, et al. Ockham’s razor in memetic computing: three stage optimal memetic exploration. Inf Sci, 2012, 188: 17–43CrossRefGoogle Scholar
  33. 33.
    Meuth R, Lim M H, Ong Y S, et al. A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput, 2009, 1: 85–100CrossRefGoogle Scholar
  34. 34.
    Hadka D, Reed P. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolut Comput, 2012, 20: 423–452CrossRefGoogle Scholar
  35. 35.
    Hadka D, Reed P. Borg: an auto-adaptive many-objective evolutionary computing framework. Evolut Comput, 2013, 21: 231–259CrossRefGoogle Scholar
  36. 36.
    Grobler J, Engelbrecht A P, Kendall G, et al. Alternative hyper-heuristic strategies for multi-method global optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Barcelona, 2010. 1–8CrossRefGoogle Scholar
  37. 37.
    Peng F, Tang K, Chen G, et al. Population-based algorithm portfolios for numerical optimization. IEEE Trans Evolut Comput, 2010, 14: 782–800CrossRefGoogle Scholar
  38. 38.
    Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybernet Part B: Cybernet, 2011, 41: 397–413CrossRefGoogle Scholar
  39. 39.
    Elsayed S M, Sarker R A, Essam D L. An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf, 2013, 9: 89–99CrossRefGoogle Scholar
  40. 40.
    Zhang X, Srinivasan R, Liew M V. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrol Process, 2010, 24: 955–969CrossRefGoogle Scholar
  41. 41.
    Dane J H, Vrugt J A, Unsal E. Soil hydraulic functions determined from measurements of air permeability, capillary modeling, and high-dimensional parameter estimation. Vadose Zone J, 2011, 10: 459–465CrossRefGoogle Scholar
  42. 42.
    Burke E K, Kendall G, Soubeiga E. A tabu-search hyperheuristic for timetabling and rostering. J Heuristics, 2003, 9: 451–470CrossRefGoogle Scholar
  43. 43.
    Beckers M L M, Derks E P P A, Melssen W J, et al. Using genetic algorithms for conformational analysis of biomacromolecules. Comput Chem, 1996, 20: 449–457CrossRefGoogle Scholar
  44. 44.
    Fukuyama Y, Chiang H D. A parallel genetic algorithm for generation expansion planning. IEEE Trans Power Syst, 1996, 11: 955–961CrossRefGoogle Scholar
  45. 45.
    Tao F, Laili Y J, Xu L, et al. FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf, 2013, 9: 2023–2033CrossRefGoogle Scholar
  46. 46.
    Matsumura T, Nakamura M, Okech J, et al. A parallel and distributed genetic algorithm on loosely-coupled multiprocessor systems. IEICE Trans Fund Electr Commun Comput Sci, 1998, 81: 540–546Google Scholar
  47. 47.
    Lourenco H R, Martin O C, Stutzle T. Iterated local search. In: Handbook of Metaheuristics. Beilin: Springer, 2003. 320–353Google Scholar
  48. 48.
    Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Global Optimiz, 2007, 39: 459–471MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation, 2001, 76: 60–68CrossRefGoogle Scholar
  50. 50.
    Yang X S, Deb S. Cuckoo search via levy flights. In: IEEE World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, 2009. 210–214CrossRefGoogle Scholar
  51. 51.
    Mladenovic N, Hansen P. Variable neighborhood search. Comput Oper Res, 1997, 24: 1097–1100MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Feo T A, Resende M G. Greedy randomized adaptive search procedures. J Global Optim, 1995, 6: 109–133MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Socha K, Dorigo M. Ant colony optimization for continuous domains. Eur J Oper Res, 2008, 185: 1155–1173MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Hu M, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput, 2013, 17: 705–720CrossRefGoogle Scholar
  55. 55.
    Suganthan P N, Hansen N, Liang J J, et al. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. KanGAL Report 2005005. 2005Google Scholar
  56. 56.
    Wineberg M, Christensen S. An introduction to statistical analysis for evolutionary computation. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. New York: ACM, 2008. 2639–2664Google Scholar
  57. 57.
    Tao F, Feng Y, Zhang L, et al. CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl Soft Comput, 2014, 19: 264–279CrossRefGoogle Scholar
  58. 58.
    Tao F, Cheng Y, Xu L, et al. CCIoT-CMfg: cloud computing and Internet of things based cloud manufacturing service system. IEEE Trans Ind Inf, 2014, 10: 1435–1442CrossRefGoogle Scholar
  59. 59.
    Tao F, Zuo Y, Xu L, et al. IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf, 2014, 10: 1547–1557CrossRefGoogle Scholar
  60. 60.
    Tao F, Zuo Y, Xu L, et al. Internet of things and BOM based life cycle assessment of energy-saving and emissionreduction of product. IEEE Trans Ind Inf, 2014, 10: 1252–1264CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuanjun Laili
    • 1
  • Lin Zhang
    • 1
    Email author
  • Fei Tao
    • 1
  • Pingchuan Ma
    • 1
  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina

Personalised recommendations