Virtual Strategy QoS routing in satellite networks

Abstract

Satellite network users want to unify different satellites to enhance the quality-of-service (QoS) stability of the satellite networks and select feasible paths through different networks to feed different applications. Unfortunately, the state of affairs is that different applications need to use several different application programming interfaces and to design different protocols on how and when to use a specific network. This is troublesome and error-prone as the application programming interfaces vary a lot. In this paper, we design a Virtual Strategy in satellite network based on which a QoS routing service scheme is then proposed. We analyze why applications should use and benefit from Virtual Strategy. This Virtual Strategy is a middleware solution that enables seamless usage of services from different satellite network parts. And then, the supporting QoS routing solution enables the committed QoS services over Virtual Strategy. Finally, we provide a comparison between the previous satellite networks and our work. The simulation results show that our Virtual Strategy QoS routing scheme demonstrates dominated performances under complex architecture.

摘要

卫星网络联合不同的卫星节点共同为用户提升 QoS 服务, 并为不同服务要求的应用选择不同的合适路径。 遗憾的是, 不同的应用经常需要使用不同的应用编程接口, 也需要设计特定的协议控制在何时、 通过何种方式使用特定的网络模块。 而应用编程接口的多变性使得上述问题非常复杂和易错。 本文设计和部署了卫星网络虚拟策略, 并在此基础上提出了相应的 QoS 服务策略。 作为一个中间策略, 虚拟策略无缝地调用卫星网络不同部分提供的服务, 对 QoS 路由的支持也提供了在虚拟策略基础上满足 QoS 服务的能力。 仿真结果表明虚拟策略 QoS 路由策略在复杂卫星网络结构背景下展现出较大优势。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Maatta J, Jarvinen R, Luostarinen R, et al. The virtual network system. In: Proceedings of the 2nd International Workshop on Middleware for Pervasive Mobile and Embedded Computing. New York: ACM Press, 2010. 3

    Google Scholar 

  2. 2

    Saeed A, Habak K, Fouad M, et al. DNIS: a middleware for dynamic multiple network interfaces scheduling. ACM SIGMOBILE Mobile Comput Commun Rev, 2010, 14: 16–18

    Article  Google Scholar 

  3. 3

    Jarvinen R, Maatta J, Luostarinen R, et al. MICS messaging platform: architecture, design and routing. In: Proceedings of the Military Communications Conference, San Jose, 2010. 1893–1898

    Google Scholar 

  4. 4

    Bianzino A P, Chaudet C, Rossi D, et al. A survey of green networking research. Commun Surv Tutorials, 2012, 14: 3–20

    Article  Google Scholar 

  5. 5

    Fischer A, Botero Vega J F, Duelli M, et al. ALEVIN a framework to develop, compare, and analyze virtual network embedding algorithms. Electron Commun EASST, 2011, 37: 1–12

    Google Scholar 

  6. 6

    Buskirk G A, Santiago R A. US Patent 7 978 606, 2011–7–12

  7. 7

    Merz S, Quinson M, Rosa C. Simgrid mc: verification support for a multi-api simulation platform. In: Formal Techniques for Distributed Systems. Berlin: Springer, 2011. 274–288

    Google Scholar 

  8. 8

    Houidi I, Louati W, Ameur W B, et al. Virtual network provisioning across multiple substrate networks. Comput Netw, 2011, 55: 1011–1023

    Article  MATH  Google Scholar 

  9. 9

    Chowdhury M, Rahman M R, Boutaba R. Vineyard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans Netw, 2012, 20: 206–219

    Article  Google Scholar 

  10. 10

    Liu J. Evaluating standard-based self-virtualizing devices: a performance study on 10 GBE NICS with SR-IOV support. In: Proceedings of IEEE International Symposium on Parallel and Distribution Processing, Atlanta, 2010. 1–12

    Google Scholar 

  11. 11

    Shea R, Liu J. Understanding the impact of denial of service attacks on virtual machines. In: Proceedings of IEEE the 20th International Workshop on Quality of Service. New Jersey: IEEE Press, 2012. 27

    Google Scholar 

  12. 12

    Liu H Y, Sun F C. Routing for predictable multi-layered satellite networks. Sci China Inf Sci, 2013, 56: 110102

    Google Scholar 

  13. 13

    Zlochin M, Birattari M, Meuleau N, et al. Model-based search for combinatorial optimization: a critical survey. Ann Oper Res, 2004, 131: 373–395

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Montenbruck O, Gill E. Satellite Orbits: Models, Methods and Applications. Berlin: Springer Science & Business Media, 2012. 153–155

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heyu Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, F. & Wang, S. Virtual Strategy QoS routing in satellite networks. Sci. China Inf. Sci. 59, 92201 (2016). https://doi.org/10.1007/s11432-015-5364-0

Download citation

Keywords

  • satellite network
  • QoS services
  • Virtual Strategy
  • middleware
  • routing scheme