Robust mesh deformation with salient features preservation

保持显著特征的鲁棒网格变形算法

Abstract

Triangular meshes often contain a few salient features. Traditional deformation algorithms mainly preserve the local details and volume, thus producing unnatural results. This paper proposes a robust and effective algorithm to prevent the distortion of salient features. Firstly, the salient features can be automatically extracted through saliency-based clustering and aggregation. A nonlinear energy function is then minimized to make the salient features behave rigidly to retain the shape. Finally, for the robustness of the minimization, we generate a coarse solid subspace around the input mesh, and carry out the energy minimization in this subspace. Experiments show that our algorithm can preserve the salient features and obtain visual-pleasing results.

摘要

创新点

本文提出了一种鲁棒有效的变形算法来防止显著特征的扭曲。 首先, 基于局部显著度的聚类算法可以自动地提取出网格模型的显著特征。 然后, 通过优化一个非线性能量函数来使得这些特征进行刚性变形, 从而保持它们的形状不变。 最后, 为了保证优化过程的收敛性和稳定性, 将能量函数投影到一个稀疏的实体子空间, 并在该子空间上进行能量的优化。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Lipman Y, Sorkine O, Cohen-Or D, et al. Differential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling International, Genova, 2004. 181–190

    Google Scholar 

  2. 2

    Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale signature based on heat diffusion. Comput Graph Forum, 2009, 28: 1383–1392

    Article  Google Scholar 

  3. 3

    Huang J, Chen L, Liu X G, et al. Efficient mesh deformation using tetrahedron control mesh. Comput Aided Geom Des, 2009, 26:617–626

  4. 4

    Singh K, Fiume E. Wires: a geometric deformation technique. In: Proceedings of the International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), Orlando, 1998. 405–414

    Google Scholar 

  5. 5

    Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Trans Graph, 2005, 24: 561–566

    Article  Google Scholar 

  6. 6

    Joshi P, Meyer M, DeRose T, et al. Harmonic coordinates for character articulation. ACM Trans Graph, 2007, 26: 71

    Article  Google Scholar 

  7. 7

    Lipman Y, Levin D, Cohen-Or D. Green coordinates. ACM Trans Graph, 2008, 27: 78

    Article  Google Scholar 

  8. 8

    Ben-Chen M, Weber O, Gotsman C. Variational harmonic maps for space deformation. ACM Trans Graph, 2009, 28: 34

    Article  Google Scholar 

  9. 9

    Jacobson A, Baran I, Popović J, et al. Bounded biharmonic weights for real-time deformation. ACM Trans Graph, 2011, 30: 78

    Google Scholar 

  10. 10

    García F G, Paradinas T, Coll N, et al. *Cages:: a multi-level, multi-cage based system for mesh deformation. ACM Trans Graph, 2013, 32: 24

    Article  MATH  Google Scholar 

  11. 11

    Li X Y, Ju T, Hu S M. Cubic mean value coordinates. ACM Trans Graph, 2013, 32: 126

    MATH  Google Scholar 

  12. 12

    Lewis J P, Cordner M, Fong N. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the SIGGRAPH Conference, New Orleans, 2000. 165–172

    Google Scholar 

  13. 13

    James D L, Twigg C D. Skinning mesh animations. ACM Trans Graph, 2005, 24: 399–407

    Article  Google Scholar 

  14. 14

    Yoshizawa S, Belyaev A, Seidel H-P. Skeleton-based variational mesh deformations. Comput Graph Forum, 2007, 26: 255–264

    Article  Google Scholar 

  15. 15

    Yan H B, Hu S M, Martin R, et al. Skeleton-based shape deformation using simplex transformations. IEEE Trans Vis Comput Graph, 2008, 14: 693–706

    Article  Google Scholar 

  16. 16

    Shi X H, Zhou K, Tong Y Y, et al. Example-based dynamic skinning in real time. ACM Trans Graph, 2008, 27: 29

    Article  Google Scholar 

  17. 17

    Jacobson A, Baran I, Kavan L, et al. Fast automatic skinning transformations. ACM Trans Graph, 2012, 31: 77

    Article  Google Scholar 

  18. 18

    Kavan L, Sorkine O. Elasticity-inspired deformers for character articulation. ACM Trans Graph, 2012, 31: 196

    Article  Google Scholar 

  19. 19

    Vaillant R, Barthe L, Guennebaud G, et al. Implicit skinning: real-time skin deformation with contact modeling. ACM Trans Graph, 2013, 32: 125

    Article  MATH  Google Scholar 

  20. 20

    Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In: Proceedings of the International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), Los Angeles, 1997. 259–268

    Google Scholar 

  21. 21

    Kobbelt L, Campagna S, Vorsatz J, et al. Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of the International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), Orlando, 1998. 105–114

    Google Scholar 

  22. 22

    Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In: Proceedings of the SIGGRAPH Conference, Los Angeles, 1999. 325–334

    Google Scholar 

  23. 23

    Botsch M, Kobbelt L. Multiresolution surface representation based on displacement volumes. Comput Graph Forum, 2003, 22: 483–492

    Article  Google Scholar 

  24. 24

    Sauvage B, Hahmann S, Bonneau G-P. Volume preservation of multiresolution meshes. Comput Graph Forum, 2007, 26: 275–283

    Article  Google Scholar 

  25. 25

    Manson J, Schaefer S. Hierarchical deformation of locally rigid meshes. Comput Graph Forum, 2011, 30: 2387–2396

    Article  Google Scholar 

  26. 26

    Sorkine O, Cohen-Or D, Lipman Y, et al. Laplacian surface editing. In: Proceedings of the Eurographics Symposium on Geometry Processing, Nice, 2004. 179–188

    Google Scholar 

  27. 27

    Yu Y Z, Zhou K, Xu D, et al. Mesh editing with Poisson-based gradient field manipulation. ACM Trans Graph, 2004, 23: 644–651

    Article  Google Scholar 

  28. 28

    Lipman Y, Sorkine O, Levin D, et al. Linear rotation-invariant coordinates for meshes. ACM Trans Graph, 2005, 24: 479–487

    Article  Google Scholar 

  29. 29

    Zhou K, Huang J, Snyder J, et al. Large mesh deformation using the volumetric graph Laplacian. ACM Trans Graph, 2005, 24: 496–503

    Article  Google Scholar 

  30. 30

    Au O K-C, Tai C-L, Liu L G, et al. Dual Laplacian editing for meshes. IEEE Trans Vis Comput Graph, 2006, 12: 386–395

    Article  Google Scholar 

  31. 31

    Huang J, Shi X H, Liu X G, et al. Subspace gradient domain mesh deformation. ACM Trans Graph, 2006, 25: 1126–1134

    Article  Google Scholar 

  32. 32

    Rivers A R, James D L. FastLSM: fast lattice shape matching for robust real-time deformation. ACM Trans Graph, 2007, 26: 82

    Article  Google Scholar 

  33. 33

    Au O K-C, Fu H B, Tai C-L, et al. Handle-aware isolines for scalable shape editing. ACM Trans Graph, 2007, 26: 83

    Article  Google Scholar 

  34. 34

    Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In: Proceedings of the Eurographics Symposium on Geometry Processing, Nice, 2007. 109–116

    Google Scholar 

  35. 35

    Kraevoy V, Sheffer A, Shamir A. Non-homogeneous resizing of complex models. ACM Trans Graph, 2008, 27: 111

    Article  Google Scholar 

  36. 36

    Xiao C X, Jin L Q, Nie Y W, et al. Content-aware model resizing with symmetry-preservation. Vis Comput, 2015, 31: 155–167

    Article  Google Scholar 

  37. 37

    Xu W W, Wang J, Yin K K, et al. Joint-aware manipulation of deformable models. ACM Trans Graph, 2009, 28: 35

    Google Scholar 

  38. 38

    Gal R, Sorkine O, Mitra N J, et al. iWIRES: an analyze-and-edit approach to shape manipulation. ACM Trans Graph, 2009, 28: 33

    Article  Google Scholar 

  39. 39

    Zheng Y, Fu H, Cohen-Or D, et al. Component-wise controllers for structure-preserving shape manipulation. Comput Graph Forum, 2011, 30: 563–572

    Article  Google Scholar 

  40. 40

    Gao L, Zhang G X, Lai Y K. Lp shape deformation. Sci China Inf Sci, 2012, 55: 983–993

    MathSciNet  Article  Google Scholar 

  41. 41

    Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Trans Graph, 2003, 22: 950–953

    Article  Google Scholar 

  42. 42

    Müller M, Heidelberger B, Teschner M, et al. Meshless deformations based on shape matching. ACM Trans Graph, 2005, 24: 471–478

    Article  Google Scholar 

  43. 43

    Desbrun M, Meyer M, Schröder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the SIGGRAPH Conference, Los Angeles, 1999. 317–324

    Google Scholar 

  44. 44

    Alliez P, Cohen-Steiner D, Yvinec M, et al. Variational tetrahedral meshing. ACM Trans Graph, 2005, 24: 617–625

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Lu, S., Qian, H. et al. Robust mesh deformation with salient features preservation. Sci. China Inf. Sci. 59, 052106 (2016). https://doi.org/10.1007/s11432-015-5361-3

Download citation

Keywords

  • mesh deformation
  • salient features
  • rigid deformation
  • coarse solid subspace
  • nonlinear energy minimization

关键词

  • 网格变形
  • 显著特征
  • 刚性形变
  • 稀疏实体子空间
  • 非线性能量最小化