Sufficient and necessary conditions for global stability of genetic regulator networks with time delays



This paper is concerned with the global stability of the nonlinear model for genetic regulator networks (GRNs) with time delays. Four new sufficient and necessary conditions for global asymptotic stability and global exponential stability of the equilibrium point of GRNs are derived. Specifically, using comparing theorem and Dini derivation method, three weak sufficient conditions for global stability of GRNs with constant time delays are proposed. Finally, a general GRN model is used to illustrate the effectiveness of the proposed theoretical results. Compared with the previous results, some sufficient and necessary conditions for Lyapunov stability of GRNs are proposed, which are not seen before.



This is a preview of subscription content, access via your institution.


  1. 1

    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961, 3: 318–356

    Article  Google Scholar 

  2. 2

    Smolen P, Baxter D A, Byrne J H. Mathematical modeling of gene networks. Neuron, 2000, 26: 567–580

    Article  MATH  Google Scholar 

  3. 3

    Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia Coli. Nature, 2000, 403: 339–342

    Article  Google Scholar 

  4. 4

    Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335–338

    Article  Google Scholar 

  5. 5

    Somogyi R, Sniegoski C. Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity, 1996, 1: 45–63

    MathSciNet  Article  Google Scholar 

  6. 6

    Weaver D C, Workman C T, Storm G D. Modeling regulatory networks with weight matrices. Proc Pac Symp Biocomput, 1999, 4: 113–123

    Google Scholar 

  7. 7

    Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol, 2000, 7: 601–620

    Article  Google Scholar 

  8. 8

    Hartemink A J, Gifford D K, Jaakkola T S, et al. Bayesian methods for elucidating genetic regulatory networks. IEEE Intell Syst, 2002, 17: 37–43

    Google Scholar 

  9. 9

    Hardy S, Robillard P N. Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J Bioinform Comput Biol, 2004, 2: 595–613

    Article  Google Scholar 

  10. 10

    Chaouiya C, Remy E, Ruet P, et al. Petri net modeling of biological regulatory networks. J Discrete Algorithms, 2008, 6: 165–177

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Bolouri H, Davidson E H. Modeling transcriptional regulatory networks. Bioessays, 2002, 24: 1118–1129

    Article  Google Scholar 

  12. 12

    Chen L, Aihara K. Stability of genetic regulatory networks with time delay. IEEE Trans Circuit Syst I Fundam Theory Appl, 2002, 49: 602–608

    MathSciNet  Article  Google Scholar 

  13. 13

    Chesi G, Hung Y S. Stability analysis of uncertain genetic SUM regulatory networks. Automatica, 2008, 44: 2298–2305

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Chesi G. Robustness analysis of genetic regulatory networks affected by model uncertainty. Automatica, 2011, 47: 1131–1138

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Jiang W, Li X, Guo Z, et al. A novel model-free approach for reconstruction of time-delayed gene regulatory networks. Sci China Ser C-Life Sci, 2006, 49: 190–200

    Article  Google Scholar 

  16. 16

    Li C, Chen L, Aihara K. Stability of genetic networks with SUM regulatory logic: Lur’e system and LMI approach. IEEE Trans Circuits Syst I-Regul Pap, 2006, 53: 2451–2458

    MathSciNet  Article  Google Scholar 

  17. 17

    Li P, Lam J, Shu Z. On the transient and steady-state estimates of interval genetic regulatory networks. IEEE Trans Syst Man Cybern Part B-Cybern, 2010, 40: 336–349

    Article  Google Scholar 

  18. 18

    Ren F, Cao J D. Asymptotic and robust stability of genetic regulatory networks with time-varying delays. Neurocomputing, 2008, 71: 834–842

    Article  Google Scholar 

  19. 19

    Wu F X. Global and robust stability analysis of genetic regulatory networks with time-varying delays and parameter uncertainties. IEEE Trans Biomed Circuits Syst, 2011, 5: 391–398

    Article  Google Scholar 

  20. 20

    Li Y L, Lin Z L. Multistability and its robustness of a class of biological systems. IEEE Trans Nanobiosci, 2013, 12: 321–331

    Article  Google Scholar 

  21. 21

    Pan W, Wang Z, Gao H, et al. Monostability and multistability of genetic regulatory networks with different types of regulation functions. Nonlinear Anal-Real World App, 2010, 11: 3170–3185

    Article  MATH  Google Scholar 

  22. 22

    Wang L, Wang P, Lan Y H. Stability analysis of the drosophila body polarity gene networks. Sci China-Phys Mech Astron, 2011, 4: 103–112

    Google Scholar 

  23. 23

    Luo Q, Zhang R B, Liao X X. Unconditional global exponential stability in Lagrange sense for genetic regulatory networks with SUM regulatory logic. Cogn Neurodyn, 2010, 4: 251–261

    Article  Google Scholar 

  24. 24

    Liao X X. Theory, Methods and Application of Stability (in Chinese). 2nd ed. Wuhan: HuaZhong University of Science and Technology Press, 2010

    Google Scholar 

  25. 25

    Liao X X. Necessary and sufficient conditions for absolute stability of Lurie indirect control-systems. Sci China Ser G-Phys Mech Astron, 1989, 32: 1047–1061

    MathSciNet  MATH  Google Scholar 

  26. 26

    Liao X X, Yu P. Absolute Stability of Nonlinear Control Systems. 2nd ed. New York: Springer, 2008

    Book  MATH  Google Scholar 

  27. 27

    Luo Q, Liao X X, Zeng Z G. Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application. Sci China Inf Sci, 2010, 40: 1574–1583

    MathSciNet  Article  Google Scholar 

  28. 28

    Yuh C H, Bolouri H, Davidson E H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 1998, 279: 1896–1902

    Article  Google Scholar 

  29. 29

    Granas A, Dugundji J. Fixed Point Theory. New York: Springer-Verlag, 2003

    Book  MATH  Google Scholar 

  30. 30

    Rudin W. Principles of Mathematical Analysis. 3rd ed. Beijing: Machinery Industry Press, 2008

    MATH  Google Scholar 

  31. 31

    Qin Y X, Liu Y Q, Wang L. Motion Stability of Dynamical Systems with Time Delay (in Chinese). Beijing: Science Press, 1963

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jinhua Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Huang, J., Tian, F. et al. Sufficient and necessary conditions for global stability of genetic regulator networks with time delays. Sci. China Inf. Sci. 59, 1–13 (2016).

Download citation


  • genetic regulator networks
  • time delay
  • global asymptotic stable
  • global exponential stable
  • comparing theorem
  • Dini derivative
  • 012202


  • 基因调控网络
  • 时滞
  • 全局渐近稳定
  • 全局指数稳定
  • 比较定理
  • Dini导数