Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sufficient and necessary conditions for global stability of genetic regulator networks with time delays

一类时滞基因调控网络全局稳定的充分必要条件

Abstract

This paper is concerned with the global stability of the nonlinear model for genetic regulator networks (GRNs) with time delays. Four new sufficient and necessary conditions for global asymptotic stability and global exponential stability of the equilibrium point of GRNs are derived. Specifically, using comparing theorem and Dini derivation method, three weak sufficient conditions for global stability of GRNs with constant time delays are proposed. Finally, a general GRN model is used to illustrate the effectiveness of the proposed theoretical results. Compared with the previous results, some sufficient and necessary conditions for Lyapunov stability of GRNs are proposed, which are not seen before.

创新点

本文讨论了一类非线性时滞基因调控网络的全局稳定性,给出了四个关于基因调控网络平衡点全局渐近稳定和全局指数稳定的充分必要条件。此外,本文通过运用比较定理和Dini导数,提出了三个关于基因调控网络全局稳定的充分条件。最后,通过一个典型的基因调控网络模型,进一步验证了本文给出结论的有效性。与已有基因调控网络稳定性的结论相比,基于Lyapunov稳定性的充分必要条件在以前的文献中未见到。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 1961, 3: 318–356

  2. 2

    Smolen P, Baxter D A, Byrne J H. Mathematical modeling of gene networks. Neuron, 2000, 26: 567–580

  3. 3

    Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia Coli. Nature, 2000, 403: 339–342

  4. 4

    Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335–338

  5. 5

    Somogyi R, Sniegoski C. Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity, 1996, 1: 45–63

  6. 6

    Weaver D C, Workman C T, Storm G D. Modeling regulatory networks with weight matrices. Proc Pac Symp Biocomput, 1999, 4: 113–123

  7. 7

    Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol, 2000, 7: 601–620

  8. 8

    Hartemink A J, Gifford D K, Jaakkola T S, et al. Bayesian methods for elucidating genetic regulatory networks. IEEE Intell Syst, 2002, 17: 37–43

  9. 9

    Hardy S, Robillard P N. Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J Bioinform Comput Biol, 2004, 2: 595–613

  10. 10

    Chaouiya C, Remy E, Ruet P, et al. Petri net modeling of biological regulatory networks. J Discrete Algorithms, 2008, 6: 165–177

  11. 11

    Bolouri H, Davidson E H. Modeling transcriptional regulatory networks. Bioessays, 2002, 24: 1118–1129

  12. 12

    Chen L, Aihara K. Stability of genetic regulatory networks with time delay. IEEE Trans Circuit Syst I Fundam Theory Appl, 2002, 49: 602–608

  13. 13

    Chesi G, Hung Y S. Stability analysis of uncertain genetic SUM regulatory networks. Automatica, 2008, 44: 2298–2305

  14. 14

    Chesi G. Robustness analysis of genetic regulatory networks affected by model uncertainty. Automatica, 2011, 47: 1131–1138

  15. 15

    Jiang W, Li X, Guo Z, et al. A novel model-free approach for reconstruction of time-delayed gene regulatory networks. Sci China Ser C-Life Sci, 2006, 49: 190–200

  16. 16

    Li C, Chen L, Aihara K. Stability of genetic networks with SUM regulatory logic: Lur’e system and LMI approach. IEEE Trans Circuits Syst I-Regul Pap, 2006, 53: 2451–2458

  17. 17

    Li P, Lam J, Shu Z. On the transient and steady-state estimates of interval genetic regulatory networks. IEEE Trans Syst Man Cybern Part B-Cybern, 2010, 40: 336–349

  18. 18

    Ren F, Cao J D. Asymptotic and robust stability of genetic regulatory networks with time-varying delays. Neurocomputing, 2008, 71: 834–842

  19. 19

    Wu F X. Global and robust stability analysis of genetic regulatory networks with time-varying delays and parameter uncertainties. IEEE Trans Biomed Circuits Syst, 2011, 5: 391–398

  20. 20

    Li Y L, Lin Z L. Multistability and its robustness of a class of biological systems. IEEE Trans Nanobiosci, 2013, 12: 321–331

  21. 21

    Pan W, Wang Z, Gao H, et al. Monostability and multistability of genetic regulatory networks with different types of regulation functions. Nonlinear Anal-Real World App, 2010, 11: 3170–3185

  22. 22

    Wang L, Wang P, Lan Y H. Stability analysis of the drosophila body polarity gene networks. Sci China-Phys Mech Astron, 2011, 4: 103–112

  23. 23

    Luo Q, Zhang R B, Liao X X. Unconditional global exponential stability in Lagrange sense for genetic regulatory networks with SUM regulatory logic. Cogn Neurodyn, 2010, 4: 251–261

  24. 24

    Liao X X. Theory, Methods and Application of Stability (in Chinese). 2nd ed. Wuhan: HuaZhong University of Science and Technology Press, 2010

  25. 25

    Liao X X. Necessary and sufficient conditions for absolute stability of Lurie indirect control-systems. Sci China Ser G-Phys Mech Astron, 1989, 32: 1047–1061

  26. 26

    Liao X X, Yu P. Absolute Stability of Nonlinear Control Systems. 2nd ed. New York: Springer, 2008

  27. 27

    Luo Q, Liao X X, Zeng Z G. Sufficient and necessary conditions for Lyapunov stability of Lorenz system and their application. Sci China Inf Sci, 2010, 40: 1574–1583

  28. 28

    Yuh C H, Bolouri H, Davidson E H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 1998, 279: 1896–1902

  29. 29

    Granas A, Dugundji J. Fixed Point Theory. New York: Springer-Verlag, 2003

  30. 30

    Rudin W. Principles of Mathematical Analysis. 3rd ed. Beijing: Machinery Industry Press, 2008

  31. 31

    Qin Y X, Liu Y Q, Wang L. Motion Stability of Dynamical Systems with Time Delay (in Chinese). Beijing: Science Press, 1963

Download references

Author information

Correspondence to Jinhua Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Huang, J., Tian, F. et al. Sufficient and necessary conditions for global stability of genetic regulator networks with time delays. Sci. China Inf. Sci. 59, 1–13 (2016). https://doi.org/10.1007/s11432-015-5357-z

Download citation

Keywords

  • genetic regulator networks
  • time delay
  • global asymptotic stable
  • global exponential stable
  • comparing theorem
  • Dini derivative
  • 012202

关键词

  • 基因调控网络
  • 时滞
  • 全局渐近稳定
  • 全局指数稳定
  • 比较定理
  • Dini导数