Interference migration using concurrent transmission for energy-efficient HetNets



This paper explores the non-uniform distribution property of interference from the perspective of green communications. An interference migration strategy with concurrent transmission is proposed to transfer the interference among different interference regions. In particular, an interference intensity index is used to depict the non-uniform interference distribution. Then we derive the threshold for executing interference migration and the optimal transmission splitting probabilities for energy efficiency (EE) maximization. The results demonstrate that our strategy significantly improves the EE.


本文研究多种类型基站共同组网时引发的干扰问题, 揭示了干扰具有空间分布不均匀的现象, 通过引入干扰差指数对这种不均匀性进行了定义, 并对干扰转移问题进行了建模, 提出基于并发传输的干扰转移策略。最后, 通过计算机仿真验证了该策略有效平衡了不同区域的干扰, 显著提高了系统的能效。

This is a preview of subscription content, access via your institution.


  1. 1

    Saquib N, Hossain E, Le L B, et al. Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wirel Commun, 2012, 19: 86–95

    Article  Google Scholar 

  2. 2

    Onireti O, Heliot F, Imran M A. On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system. IEEE Trans Wirel Commun, 2012, 11: 556–561

    Article  Google Scholar 

  3. 3

    Louhi J T. Energy efficiency of modern cellular base stations. In: Proceedings of Telecommunications Energy Conference, Rome, 2007. 475–476

    Google Scholar 

  4. 4

    Carroll A, Heiser G. An analysis of power consumption in a smartphone. In: Proceedings of USENIX annual Technical Conference, Boston, 2010. 8–21

    Google Scholar 

  5. 5

    Meng Y, Li J D, Li H Y. Efficient resource allocation scheme for multi-service based on interference mitigation in LTE-advanced networks. Sci China Inf Sci, 2014, 57: 082304

    Article  Google Scholar 

  6. 6

    Andrews J. Interference cancellation for cellular systems: a contemporary overview. IEEE Wirel Commun, 2005, 12: 19–29

    Article  Google Scholar 

  7. 7

    Weber S P, Andrews J, Yang X Y, et al. Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans Inform theory, 2007, 53: 2799–2814

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Trichard L, Evans J, Collings I. Large system analysis of linear parallel interference cancellation. In: Proceedings of IEEE International Conference, Helsinki, 2001. 26–30

    Google Scholar 

  9. 9

    Zahir T, Arshad K, Nakata A, et al. Interference management in femtocells. IEEE Commun Surv Tut, 2013, 15: 293–311

    Article  Google Scholar 

  10. 10

    Fan M X, Tokgoz S N, Meshkati F. Interference management in femtocell deployment. In: Proceedings of 3GPP2 Femto Workshop, Boston, 2007

    Google Scholar 

  11. 11

    Chandrasekhar V, Andrews J, Shen Z K, et al. Distributed power control in femtocell-underlay cellular networks. In: Proceedings of Global Telecommunications Conference, Honolulu, 2009. 1–6

    Google Scholar 

  12. 12

    Rahman M, Yanikomeroglu H. Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Trans Wirel Commun, 2010, 9: 1414–1425

    Article  Google Scholar 

  13. 13

    Kim Y, Ko H, Pack S, et al. Mobility-aware call admission control algorithm with handoff queue in mobile hotspots. IEEE Trans Veh Technol, 2013, 62: 3903–3912

    Article  Google Scholar 

  14. 14

    Keshav K, Indukuri V, Venkataram P. Energy efficient scheduling in 4G smart phones for mobile hotspot application. In: Proceedings of the National Conference on Communications, Kharagpur, 2012. 1–5

    Google Scholar 

  15. 15

    Yang Z L, Yang Q H, Fu F L, et al. A novel load balancing scheme in LTE and WiFi coexisted network for OFDMA system. In: Proceedings of the Wireless Communications Signal Processing, Hangzhou, 2013. 1–5

    Google Scholar 

  16. 16

    Dimatteo S, Hui P, Han B, et al. Cellular traffic offloading through WiFi networks. In: Proceedings of the Mobile Adhoc and Sensor Systems, Valencia, 2011. 192–201

    Google Scholar 

  17. 17

    Zhang F, Zhang W, Ling Q. Non-cooperative game for capacity offload. IEEE Trans Wirel Commun, 2012, 11: 1565–1575

    Article  Google Scholar 

  18. 18

    Han B, Hui P, Kumar V, et al. Mobile data offloading through opportunistic communications and social participation. IEEE Trans Mob Comput, 2012, 11: 821–834

    Article  Google Scholar 

  19. 19

    Sharma A, Navda V, Ramjee R, et al. Cool-tether: energy efficient on-the-fly WiFi hot-spots using mobile phones. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, New York, 2009. 109–120

    Google Scholar 

  20. 20

    Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

  21. 21

    Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems—part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499–509

    Article  Google Scholar 

  22. 22

    Madan R, Borran J, Sampath A, et al. Cell association and interference coordination in heterogeneous LTE—a cellular networks. IEEE J Sel Areas Commun, 2010, 28: 1479–1489

    Article  Google Scholar 

  23. 23

    Miao G W, Himayat N, Li G Y. Energy-efficient link adaptation in frequency-selective channels. IEEE Trans Commun, 2010, 58: 545–554

    Article  Google Scholar 

  24. 24

    Fehske A, Marsch P, Fettweis G. Bit per Joule efficiency of cooperating base stations in cellular networks. In: Proceedings of the GLOBECOM Workshops, Miami, 2010. 1406–1411

    Google Scholar 

  25. 25

    Huang J X, Qian F, Gerber A, et al. A close examination of performance and power characteristics of 4G LTE networks. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2012. 225–238

    Google Scholar 

  26. 26

    Chen MH, Yang C Y, Chang C Y, et al. Towards energy-efficient streaming system for mobile hotspots. In: Proceedings of the ACM SIGCOMM Computer Communication Review. New York: ACM, 2011. 450–451

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Min Sheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Sheng, M., Li, J. et al. Interference migration using concurrent transmission for energy-efficient HetNets. Sci. China Inf. Sci. 59, 1–10 (2016).

Download citation


  • interference migration
  • energy efficiency
  • concurrent transmission
  • heterogeneous networks
  • mobile hotspot


  • 022311


  • 干扰转移
  • 能效
  • 并发传输
  • 异构网络
  • 移动热点