Skip to main content
Log in

Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: a review

导航卫星发射源的空地双站合成孔径雷达的发展回顾

  • Review
  • Special Focus on Bistatic Synthetic Aperture Radar Signal Processing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper reviews the theory and practice of Space-Surface Bistatic Synthetic Aperture Radar (SS-BSAR) using navigation satellites as transmitters. In recent years, this innovative technology has reached a maturity stage which allows it to be considered for a wide range of applications. The paper covers the fundamental aspects of this technology as a radar system, such as the resolution, power budget and Point Spread Function (PSF) analysis, as well as its signal processing aspects and the state of the art in terms of advanced SAR techniques that it enables. Finally, the theoretical aspects of the paper may be directly transferred to the more generic SS-BSAR concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Willis N J. Bi-static Radar. Boston: Artech House, 1991

    Google Scholar 

  2. Cherniakov M, ed. Bi-static Radars: Emerging Technology. Hoboken: Wiley, 2008

    Google Scholar 

  3. Moccia A, Chiacchio N, Capone A. Spaceborne bi-static synthetic aperture radar for remote sensing applications. Int J Remote Sens, 2000, 21: 3395–3414

    Article  Google Scholar 

  4. Walterscheid I, Espeter T, Brenner A R, et al. Bi-static SAR experiments with PAMIR and TerraSAR-Xsetup, processing, and image results. IEEE Trans Geosci Remote Sens, 2010, 48: 3268–3279

    Article  Google Scholar 

  5. Rodriguez-Cassola M, Baumgartner S V, Krieger G, et al. Bi-static TerraSAR-X/F-SAR spaceborneCairborne SAR experiment: description, data processing, and results. IEEE Trans Geosci Remote Sens, 2010, 48: 781–794

    Article  Google Scholar 

  6. Martinsek D, Goldstein R. Bi-static radar experiment. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 1998. 31–34

    Google Scholar 

  7. Walterscheid I, Ender J H G, Loffeld O. Bi-static image processing for a hybrid SAR experiment between TerraSARX and PAMIR. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006. 1934–1937

    Google Scholar 

  8. Wang R, Loffeld O, Nies H. Focusing results and analysis of advanced bi-static SAR experiments in spaceborne or airborne/airborne or stationary configurations. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Aachen, 2010. 1–4

    Google Scholar 

  9. Behner F, Reuter S. HITCHHIKER-hybrid bi-static high resolution SAR experiment using a stationary receiver and TerraSAR-X transmitter. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Aachen, 2010. 1–4

    Google Scholar 

  10. Zeng T, Hu C, Wu L, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: theory and experimental confirmation. IEEE Trans Geosci Remote Sens, 2013, 51: 5019–5030

    Article  Google Scholar 

  11. Zeng T, Wang R, Li F, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bi-static SAR based on series reversion. IEEE Trans Geosci Remote Sens, 2013, 51: 3108–3118

    Article  Google Scholar 

  12. Cristallini D, Caruso M, Falcone P, et al. Space-based passive radar enabled by the new generation of geostationary broadcast satellites. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2010. 1–11

    Google Scholar 

  13. Cherniakov M, Nezlin D, Kubik K. Air target detection via bi-static radar based on LEOS communication signals. IEE Proc Radar Sonar Navig, 2002, 149: 33–38

    Article  Google Scholar 

  14. Griffiths H, Baker C J, Baubert J, et al. Bi-static radar using satellite-borne illuminators. In: Proceedings of RADAR 2002, Edinburgh, 2002. 1–5

    Chapter  Google Scholar 

  15. Tan D, Sun H, Lu Y, et al. Passive radar using global system for mobile communication signal: theory, implementation and measurements. IEE Proc Radar Sonar Navig, 2005, 152: 116–123

    Article  Google Scholar 

  16. Cherniakov M, Saini R, Zuo R, et al. Space surface bi-static SAR with space-borne non-cooperative transmitters. In: Proceedings of European Radar Conference, Paris, 2005. 9–12

    Google Scholar 

  17. Cherniakov M. Space-surface bi-static synthetic aperture radar-prospective and problems. In: Proceedings of Proceeding of RADAR 2002, Edinburgh, 2002. 22–25

    Chapter  Google Scholar 

  18. Santi F, Antoniou M, Pastina D. Point Spread Function Analysis for GNSS-Based Multistatic SAR. IEEE Geosci Remote Sens Lett, 2015, 12: 304–308

    Article  Google Scholar 

  19. Antoniou M, Zeng Z, Liu F F, et al. Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver. IEEE Geosci Remote Sens Lett, 2011, 9: 477–481

    Article  Google Scholar 

  20. Antoniou M, Zhou Z, Zeng Z, et al. Passive bi-static synthetic aperture radar imaging with Galileo transmitters and a moving receiver: experimental demonstration. IET Radar Sonar Navig, 2013, 7: 985–993

    Article  Google Scholar 

  21. Antoniou M, Cherniakov M. GNSS-based bi-static SAR: a signal processing view. EURASIP J Adv Signal Process, 2013. 1–16

    Google Scholar 

  22. Tian W, Zhang T, Zeng T, et al. Multi-angle fusion of SS-Bi SAR images using Compass-2/Beidou-2 satellites as opportunity illuminators. In: Proceedings of IEEE International Conference on Radar, Lille, 2014. 1–4

    Google Scholar 

  23. Maussang F, Daout F, Ginolhac G. GPS ISAR passive system characterization using point spread function. In: Proceedings of New Trends for Environmental Monitoring Using Passive Systems, Hyeres, 2008. 1–4

    Chapter  Google Scholar 

  24. Subirana J S, Zornoza J J, Pajares M H. GNSS signal. Navipedia, 2011

    Google Scholar 

  25. Zeng T, Cherniakov M, Long T. Generalized approach to resolution analysis in BSAR. IEEE Trans Geosci Remote Sens, 2005, 41: 461–474

    Google Scholar 

  26. Cherniakov M, Zeng T, Plakidis E. Ambiguity function for bi-static SAR and its application in SS-BSAR performance analysis. In: Proceedings of the International Radar Conference, Adelaide, 2003. 343–348

    Google Scholar 

  27. Zuo R. Bi-static synthetic aperture radar using GNSS as transmitters of opportunity. Dissertation for the Doctoral Degree. Birmingham: University of Birmingham, 2012

    Google Scholar 

  28. Liu F, Antoniou M, Zeng Z, et al. Coherent change detection using passive GNSS-Based BSAR: experimental proof of concept. IEEE Trans Geosci Remote Sens, 2013, 51: 4544–4555

    Article  Google Scholar 

  29. He X, Zeng T, Cherniakov M. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc Radar Sonar Navig, 2005, 152: 124–132

    Article  Google Scholar 

  30. Liu F, Antoniou M, Zeng Z, et al. Point spread function analysis for BSAR with GNSS transmitters and long dwell times: theory and experimental confirmation. IEEE Geosci Remote Sens Lett, 2013, 10: 781–785

    Article  Google Scholar 

  31. Cherniakov M, Zeng T, Plakidis E. Analysis of space-surface interferometric bi-static radar. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, 2003. 778–780

    Google Scholar 

  32. Antoniou M, Liu F, Zeng Z. Coherent change detection using GNSS-based passive SAR: first experimental results. In: Proceedings of IET International Conference on Radar Systems, Glasgow, 2012. 1–5

    Google Scholar 

  33. Saini R, Zuo R, Cherniakov M. Problem of signal synchronisation in space-surface bi-static synthetic aperture radar based on global navigation satellite emissions-experimental results. IET Radar Sonar Navig, 2010, 4: 110–125

    Article  Google Scholar 

  34. Tsui J. Fundamentals of Global Positioning System Receivers: A Software Approach. John Wiley & Sons, 2005

    Google Scholar 

  35. Dow J M, Neilan R E, Rizos C. The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy, 2009, 83: 191–198

    Article  Google Scholar 

  36. Soumekh M. Synthetic Aperture Radar Signal Processing. New York: Wiley-Interscience, 1999

    MATH  Google Scholar 

  37. Liu F, Liu H, Hu C. Modified range migration algorithm in SS-BSAR. In: Proceedings of IET International Radar Conference, Guilin, 2009. 1–4

    Google Scholar 

  38. Antoniou M, Cherniakov M, Hu C. Space-surface bi-static SAR image formation algorithms. IEEE Trans Geosci Remote Sens, 2009, 47: 1827–1843

    Article  Google Scholar 

  39. Zeng Z, Antoniou M, Zhang Q. Multi-perspective GNSS-based passive BSAR: Preliminary experimental results. In: Proceedings of International Radar Symposium (IRS), Dresden, 2013. 467–472

    Google Scholar 

  40. Huang L, Qiu X, Hu D, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm. IEEE Trans Geosci Remote Sens, 2011, 49: 500–508

    Article  Google Scholar 

  41. Preiss M, Gray D A, Stacy N J S. Detecting scene changes using synthetic aperture radar interferometry. IEEE Trans Geosci Remote Sens, 2006, 44: 2041–2054

    Article  Google Scholar 

  42. Scheuchl B, Ullmann T, Koudogbo F. Change detection using high resolution Terrasar-X data-preliminary results. In: Proceedings of ISPRS Hannover Workshop, Hannover, 2009. 1–4

    Google Scholar 

  43. Rignot E J, van Zyl J J. Change detection techniques for ERS-1 SAR data. IEEE Trans Geosci Remote Sens, 1993, 31: 896–906

    Article  Google Scholar 

  44. Zhang Q, Antoniou M, Chang W, et al. Spatial decorrelation in GNSS-based SAR coherent change detection. IEEE Trans Geosci Remote Sens, 2015, 53: 219–228

    Article  Google Scholar 

  45. Zeng T, Ao D, Hu C, et al. Multi-angle BiSAR images enhancement and scatting characteristics analysis. In: Proceedings of International Conference on Radar, Lille, 2014. 1–5

    Google Scholar 

  46. Bradaric I, Capraro G T, Weiner D D, et al. Multistatic radar systems signal processing. In: Proceedings of IEEE Conference on Radar, Verona, 2006. 106–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Antoniou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoniou, M., Cherniakov, M. & Ma, H. Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: a review. Sci. China Inf. Sci. 58, 1–20 (2015). https://doi.org/10.1007/s11432-015-5334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5334-6

Keywords

关键词

Navigation