Skip to main content
Log in

Composite dynamic surface control of hypersonic flight dynamics using neural networks

  • Research Paper
  • Special Focus on Advanced Nonlinear Control of Hypersonic Flight Vehicles
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper addresses the composite neural tracking control for the longitudinal dynamics of hypersonicflight dynamics. The dynamics is decoupled into velocity subsystem, altitude subsystem, and attitudesubsystem. For the altitude subsystem, the reference command of flight path angle is derived for the attitudesubsystem. To deal with the system uncertainty and provide efficient neural learning, the composite law forneural weights updating is studied with both tracking error and modeling error. The uniformly ultimate boundednessstability is guaranteed via Lyapunov approach. Under the dynamic surface control with novel neuraldesign, the neural system converges in a faster mode and better tracking performance is obtained. Simulationresults are presented to show the effectiveness of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci,2015, 58: 070201

  2. Wang Q, Stengel R. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dynam, 2000, 23: 577–585

    Article  Google Scholar 

  3. Dydek Z, Annaswamy A, Lavretsky E. Adaptive control and the NASA X-15-3 flight revisited. IEEE Control SystMag, 2010, 30: 32–48

    Article  MathSciNet  Google Scholar 

  4. Zong Q, Ji Y, Zeng F, et al. Output feedback backstepping control for a generic hypersonic vehicle via small-gaintheorem. Aerosp Sci Technol, 2012, 23: 409–417

    Article  Google Scholar 

  5. Chavez F R, Schmidt D K. Analytical aeropropulsive-aeroelastic hypersonic-vehicle model with dynamic analysis. JGuid Control Dynam, 1994, 17: 1308–1319

    Article  MATH  Google Scholar 

  6. Parker J, Serranit A, Yurkovich S, et al. Control-oriented modeling of an airbreathing hypersonic vehicle. J GuidControl Dynam, 2007, 23: 856–869

    Article  Google Scholar 

  7. Schmidt D K. Optimum mission performance and multivariable flight guidance for airbreathing launch vehicles. JGuid Control Dynam, 1997, 20: 1157–1164

    Article  MATH  Google Scholar 

  8. Gibson T, Crespo L, Annaswamy A. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties.In: Proceedings of American Control Conference, Saint Louis, 2009. 3178–3183

    Google Scholar 

  9. Xu H, Mirmirani M, Ioannou P. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid ControlDynam, 2004, 27: 829–838

    Article  Google Scholar 

  10. Yang J, Li S, Sun C, et al. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonicvehicles. IEEE Trans Aerosp Electron Syst, 2013, 49: 1263–1275

    Article  Google Scholar 

  11. Yang J, Zhao Z, Li S, et al. Composite predictive flight control for airbreathing hypersonic vehicles. Int J Contr, 2014,87: 1970–1984

    Article  MathSciNet  Google Scholar 

  12. Xu B, Gao D, Wang S. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci, 2011,54: 511–520

    Article  MATH  MathSciNet  Google Scholar 

  13. Gao D, Sun Z. Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci China Inf Sci, 2011, 54:521–528

    Article  MATH  MathSciNet  Google Scholar 

  14. Farrell J, Sharma M, Polycarpou M. Backstepping-based flight control with adaptive function approximation. J GuidControl Dynam, 2005, 28: 1089–1102

    Article  Google Scholar 

  15. Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller. J Guid ControlDynam, 2001, 24: 675–682

    Article  Google Scholar 

  16. Fiorentini L, Serrani A, Bolender M, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonicvehicles. J Guid Control Dynam, 2009, 32: 401–416

    Article  Google Scholar 

  17. Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameterestimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen M, Ge S, How B. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems withinput nonlinearities. IEEE Trans Neural Netw, 2010, 21: 796–812

    Article  Google Scholar 

  19. Xu B, Sun F, Yang C, et al. Adaptive discrete-time controller design with neural network for hypersonic flight vehiclevia back-stepping. Int J Contr, 2011, 84: 1543–1552

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. NonlinearDyn, 2014, 80: 1509–1520

    Google Scholar 

  21. Ge S, Hang C, Lee T. Stable Adaptive Neural Network Control. Leipzig: Springer Publishing Company, 2002. 30–31

    Book  Google Scholar 

  22. Xu B, Yang C, Shi Z. Reinforcement learning output feedback NN control using deterministic learning technique. IEEETrans Neural Netw Lear Syst, 2014, 25: 635–641

    Article  Google Scholar 

  23. Gao D, Sun Z, Du T. Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: Proceedings ofIEEE International Conference on Automation and Logistics, Jinan, 2007. 2314–2319

    Google Scholar 

  24. Xu B, Shi Z, Yang C, et al. Composite neural dynamic surface control of a class of uncertain nonlinear systems instrict-feedback form. IEEE Trans Cybern, 2014, 44: 2626–2634

    Article  Google Scholar 

  25. Wang L. Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Trans Automat Contr, 1995, 40:11–23

    Article  MATH  Google Scholar 

  26. Narendra K, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE TransNeural Netw, 1990, 1: 4–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShangMin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, C. & Zhu, J. Composite dynamic surface control of hypersonic flight dynamics using neural networks. Sci. China Inf. Sci. 58, 1–9 (2015). https://doi.org/10.1007/s11432-015-5328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5328-4

Keywords

Navigation