Stability of nonlinear feedback shift registers



Convolutional codes have been widely used in many applications such as digital video, radio, and mobile communication. Nonlinear feedback shift registers (NFSRs) are the main building blocks in convolutional decoders. A decoding error may result in a succession of further decoding errors. However, a stable NFSR can limit such an error-propagation. This paper studies the stability of NFSRs using a Boolean network approach. A Boolean network is an autonomous system that evolves as an automaton through Boolean functions. An NFSR can be viewed as a Boolean network. Based on its Boolean network representation, some sufficient and necessary conditions are provided for globally (locally) stable NFSRs. To determine the global stability of an NFSR with its stage greater than 1, the Boolean network approach requires lower time complexity of computations than the exhaustive search and the Lyapunov’s direct method.



卷积码广泛地应用于视频、无线电和移动通讯中。非线性反馈移位寄存器是卷积码译码器中的一个重要组件。一个译码错误可能导致一系列的译码错误。 然而,稳定的非线性反馈移位寄存器可以限制这种译码错误的扩散。 本文利用布尔网络方法研究非线性反馈移位寄存器的稳定性。 布尔网络是通过布尔函数进行演变的自动机。 非线性反馈移位寄存器可以看作是一个布尔网络。 基于它的布尔网络表示,给出了非线性反馈移位寄存器全局 (局部) 稳定的一些充分/必要条件。 对于判别级数大于1的非线性反馈移位寄存器的全局稳定性,布尔网络方法比穷举法和李雅普诺夫方法的计算复杂度更低。



This is a preview of subscription content, access via your institution.


  1. 1

    Massey J L, Liu R W. Application of Lyapnunov’s direct method to the error-propagation effect in convolutional codes. IEEE Trans Inf Theory, 1964, 10: 248–250

    Article  MATH  Google Scholar 

  2. 2

    Laselle J, Lefschetz S. Stability by Liapunov’s Direct method with Applications. New York: Academic Press, 1961

    Google Scholar 

  3. 3

    Mowle F J. Relations between Pn cycles and stable feedback shift registers. IEEE Trans Electron Comput, 1996, EC-15: 375–378

    Article  Google Scholar 

  4. 4

    Mowle F J. An algorithm for generating stable feedback shift registers of order n. J ACM, 1967, 14: 529–542

    Article  MATH  Google Scholar 

  5. 5

    Fontaine C. Nonlinear feedback shift register. In: van Tilborg H C A, Jajodia S, eds., Encryclopedia of Cryptography and Security. New York: Springer, 2011. 846–848

    Google Scholar 

  6. 6

    Golomb S W. Shift Register Sequences. Laguna Hills: Holden-Day, 1967

    Google Scholar 

  7. 7

    Qi H. On shift register via semi-tensor product approach. In: Proceedings of the 32nd Chinese Control Conference. Piscataway: IEEE Conference Publication Operations, 2013. 208–212

    Google Scholar 

  8. 8

    Zhong J, Lin D. On maximum length nonlinear feedback shift registers using a Boolean network approach. In: Proceedings of the 33rd Chinese Control Conference. Piscataway: IEEE Conference Publication Operations, 2014. 2502–2507

    Google Scholar 

  9. 9

    Zhao D, Peng H, Li L, et al. Novel way to research nonlinear feedback shift register. Sci China Inf Sci, 2014, 9: 092114

    MathSciNet  Google Scholar 

  10. 10

    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    MathSciNet  Article  Google Scholar 

  11. 11

    Harris S E, Sawhill B K, Wuensche A, et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity, 2002, 7: 23–40

    Article  Google Scholar 

  12. 12

    Huang S, Ingber I. Shape-dependent control of cell growth, differentiation, and apotosis: switching between attractors in cell regulatory networks. Exp Cell Res, 2000, 261: 91–103

    Article  Google Scholar 

  13. 13

    Shmulevich I, Dougherty R, Kim S, et al. Probabilistic Boolean neworks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 2002, 2: 261–274

    Article  Google Scholar 

  14. 14

    Albert R, Barabasi A L. Dynamics of complex systems: scaling laws or the period of Boolean networks. Phys Rev Lett, 2000, 84: 5660–5663

    Article  Google Scholar 

  15. 15

    Aldana M. Boolean dynamics of networks with scale-free topology. Phys D, 2003, 185: 45–66

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Samuelsson B, Troein C. Superpolynomial growth in the number of attractots in Kauffman networks. Phys Rev Lett, 2003, 90: 098701

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Cheng D. Input-state approach to Boolean networks. IEEE Trans Neural Netw, 2009, 20: 512–521

    Article  Google Scholar 

  18. 18

    Cheng D. Disturbance decoupling of Boolean control networks. IEEE Trans Automat Control, 2011, 56: 2–10

    MathSciNet  Article  Google Scholar 

  19. 19

    Cheng D, Qi H. Linear representation of dynamics of Boolean networks. IEEE Trans Automat Control, 2010, 55: 2251–2258

    MathSciNet  Article  Google Scholar 

  20. 20

    Cheng D, Qi H. State-space analysis of Boolean networks. IEEE Trans Neural Netw, 2010, 21: 584–594

    MathSciNet  Article  Google Scholar 

  21. 21

    Cheng D, Qi H, Li Z. Analysis and Control of Boolean networks. London: Springer-Verlag, 2011

    Google Scholar 

  22. 22

    Zhong J, Lu J, Huang T, et al. Synchronization of master-slave Booleannet works with impulsive effects: necessaryandsufficient criteria. Neurocomputing, 2014, 143: 269–274

    Article  Google Scholar 

  23. 23

    Chen H, Sun J. A new approach for global controllability of higher order Boolean control network. Neural Netw, 2013, 39: 12–17

    Article  MATH  Google Scholar 

  24. 24

    Wang Y, Li H. On definition and construction of Lyapunov functions for Boolean networks. In: Proceeding of the 10th World Congress on Intelligent Control and Automation. Piscataway: IEEE Conference Publication Operations, 2012. 1247–1252

    Google Scholar 

  25. 25

    Cheng D, Qi H, Li Z, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlinear Contr, 2011, 21: 134–156

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Li F, Sun J. Stability and stabilization of multivalued logical network. Nonlinear Anal-Real World App, 2011, 12: 3701–3712

    Article  MATH  Google Scholar 

  27. 27

    Li F, Sun J. Stability and stabilization of Boolean networks with impulsive effects. Syst Control Lett, 2012, 61: 1–5

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Liu Y, Lu J, Wu B. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks. ESAIM Control Optim Calc Var, 2014, 20: 158–173

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Zhong J, Lu J, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294

    Article  Google Scholar 

  30. 30

    Roger A H, Johnson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991

    Google Scholar 

  31. 31

    Qi H, Cheng D. Logic and logic-based control. J Contr Theory Appl, 2008, 6: 123–133

    MathSciNet  MATH  Google Scholar 

  32. 32

    Cheng D, Qi H, Zhao Y. An Introduction to Semi-tensor Product of Matrices and its Applications. Singapore: World Scientific Publishing Company, 2012

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jianghua Zhong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Lin, D. Stability of nonlinear feedback shift registers. Sci. China Inf. Sci. 59, 1–12 (2016).

Download citation


  • nonlinear feedback shift register
  • stability
  • Boolean function
  • Boolean network
  • semi-tensor product
  • 012204


  • 非线性反馈移位寄存器
  • 稳定性
  • 布尔函数
  • 布尔网络
  • 半张量积