Global practical tracking via adaptive output-feedback for uncertain nonlinear systems with generalized control coefficients

带有泛化控制系数不确定非线性系统的自适应输出反馈实际跟踪

Abstract

This paper investigates the global practical tracking via adaptive output-feedback for a class of uncertain nonlinear systems with generalized control coefficients. Notably, the system in question has the function-of-output control coefficients and the serious unknowns in the system and the reference signal, and hence is essentially different from the existing closely related literature. To solve the global practical tracking, a high-gain observer is first introduced to reconstruct the unmeasurable system states, and then an adaptive output-feedback controller is designed. It is worth emphasizing that the gains in the designed observer and controller are functions of time and output, for which a novel updating law of the high-gain is introduced to overcome the additional system nonlinearities and the serious unknowns mentioned above. The designed controller is shown such that all the states of the closed-loop system are globally bounded, and furthermore, tracking error will be ultimately prescribed sufficiently small. A numerical simulation is provided to demonstrate the effectiveness of the proposed approach.

创新点

本文研究了一类带有泛化控制系数不确定非线性系统的自适应输出反馈实际跟踪。与已有相关文献不同,所研究系统的控制系数是输出的函数,且系统非线性和跟踪信号中有严重未知性。为解决该问题,引入了一个高增益观测器来重构系统的不可测状态,进而设计了一个自适应输出反馈控制器。需强调的是,观测器和控制器中的高增益是输出和时间的函数,其新型调节律克服了提到的未知性及函数控制系数导致的额外系统非线性。所设计的控制器确保了闭环系统状态的全局有界性和跟踪误差最终为(事先给定的)充分小。

This is a preview of subscription content, access via your institution.

References

  1. 1

    Yan X H, Liu Y G. Global practical tracking by output-feedback for nonlinear systems with unknown growth rate. Sci China Ser F-Inf Sci, 2011, 54: 2079–2090

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Liu Y G. Global output-feedback tracking for nonlinear systems with unknown polynomial-of-output growth rate. J Control Theory Appl, 2014, 31: 921–933

    MATH  Google Scholar 

  3. 3

    Ben Abdallah A, Khalifa Y, Mabrouk M. Adaptive practical output tracking control for a class of uncertain nonlinear systems. INT J Syst Sci, 2013, 20: 1421–1431

    MathSciNet  MATH  Google Scholar 

  4. 4

    Gong Q, Qian C J. Global practical tracking of a class of nonlinear systems by output feedback. Automatica, 2007, 43: 184–189

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Shang F, Liu Y G, Zhang C H. Adaptive practical tracking control by output feedback for a class of nonlinear systems. J Syst Sci Complex, 2010, 23: 1210–1220

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Ye X D, Ding Z T. Robust tracking control of uncertain nonlinear systems with unknown control directions. Syst Control Lett, 2001, 42: 1–10

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Lin W, Pongvuthithum R. Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization. IEEE Trans Automat Control, 2003, 48: 1737–1749

    MathSciNet  Article  Google Scholar 

  8. 8

    Sun Z Y, Liu Y G. Adaptive practical output tracking control for high-order nonlinear uncertain systems. Acta Autom Sin, 2008, 34: 984–989

    MathSciNet  Article  Google Scholar 

  9. 9

    Yan X H, Liu Y G. Global practical tracking for high-order uncertain nonlinear systems with unknown control directions. SIAM J Control Optim, 2010, 48: 4453–4473

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Ryan E P. A nonlinear universal servomechanism. IEEE Trans Automat Control, 1994, 39: 753–761

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Ilchmann A, Ryan E P. Universal tracking for nonlinearly-perturbed systems in the presence of noise. Automatica, 1994, 30: 337–346

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Ye X D. Universal tracking for nonlinearly-perturbed systems without restrictions on the relative degree. Automatica, 1999, 35: 109–119

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Qian C J, Lin W. Practical output tracking of nonlinear systems with uncontrollable unstable linearization. IEEE Trans Automat Control, 2002, 47: 21–36

    MathSciNet  Article  Google Scholar 

  14. 14

    Liu Y G, Zhang J F. Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero dynamics. SIAM J Control Optim, 2006, 45: 885–926

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Freeman R A, Kokotovic P V. Tracking controllers for systems linear in the unmeasured states. Automatica, 1996, 32: 735–746

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Pan Z G, Ba¸sar T. Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems. IEEE Trans Automat Control, 1998, 43: 1066–1083

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Andrieu V, Praly L, Astolfi A. Asymptotic tracking of a reference trajectory by output-feedback for a class of nonlinear systems. Syst Control Lett, 2009, 58: 652–663

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Krishnamurthy P, Khorrami F, Jiang Z P. Global output feedback tracking for nonlinear systems in generalized outputfeedback canonical form. IEEE Trans Automat Control, 2002, 47: 814–819

    MathSciNet  Article  Google Scholar 

  19. 19

    Krishnamurthy P, Khorrami F. Dynamic high-gain scaling: state and output feedback with application to systems with ISS appended dynamics driven by all states. IEEE Trans Automat Control, 2004, 49: 2219–2239

    MathSciNet  Article  Google Scholar 

  20. 20

    Krishnamurthy P, Khorrami F. Dual high-gain-based adaptive output-feedback control for a class of nonlinear systems. Int J Adapt Control Signal Process, 2008, 22: 23–42

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Lei H, Lin W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback. Automatica, 2006, 42: 1783–1789

    MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Hale J K. Ordinary Differectial Equations. 2nd ed. New York: Krieger, 1980

    Google Scholar 

  23. 23

    Min Y Y, Liu Y G. Barbalat lemma and its application in analysis of system stability (in Chinese). J Shandong Univ (Engin Sci), 2007, 37: 51–55

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yungang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Liu, Y. Global practical tracking via adaptive output-feedback for uncertain nonlinear systems with generalized control coefficients. Sci. China Inf. Sci. 59, 1–13 (2016). https://doi.org/10.1007/s11432-015-5292-z

Download citation

Keywords

  • uncertain nonlinear systems
  • function-of-output control coefficients
  • global practical tracking
  • dynamical high-gain
  • adaptive output-feedback
  • 012203

关键词

  • 不确定非线性系统
  • 输出函数控制系数
  • 全局实际跟踪
  • 动态高增益
  • 自适应输出反馈