Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonnegative correlation coding for image classification

用于图像分类的非负关联编码

Abstract

Feature coding is one of the most important procedures in the bag-of-features model for image classification. In this paper, we propose a novel feature coding method called nonnegative correlation coding. In order to obtain a discriminative image representation, our method employs two correlations: the correlation between features and visual words, and the correlation between the obtained codes. The first correlation reflects the locality of codes, i.e., the visual words close to the local feature are activated more easily than the ones distant. The second correlation characterizes the similarity of codes, and it means that similar local features are likely to have similar codes. Both correlations are modeled under the nonnegative constraint. Based on the Nesterov’s gradient projection algorithm, we develop an effective numerical solver to optimize the nonnegative correlation coding problem with guaranteed quadratic convergence. Comprehensive experimental results on publicly available datasets demonstrate the effectiveness of our method.

创新点

本文提出了一种用于图像分类的编码方法,称为“非负关联编码”。为了获得有判别力的图像表示,非负关联编码利用了两种关系:一是待编码的局部特征与视觉单词之间的关系,它反映了编码过程的局部性,即局部特征倾向于利用距离它较近的视觉单词进行表达;二是编码之间的关系,它体现了编码过程的相似性,即相似的局部特征具有相似的编码。这两种关系都在非负约束的条件下建模。另外,本文基于NGP(Nesterov梯度投影)方法提出了一种用于求解非负关联编码的有效算法。公共数据集上的实验结果证明了方法的有效性。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos. In: Proceedings of the 9th Computer Vision Conference. Nice: IEEE, 2003. 1470–1477

  2. 2

    Huang Y Z, Wu Z F, Wang L, et al. Feature coding in image classification: a comprehensive study. IEEE Trans Pattern Anal Mach Intel, 2013, 36: 493–506

  3. 3

    Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the 22th Computer Vision and Pattern Recognition Conference. Miami: IEEE, 2009. 1794–1801

  4. 4

    Zhang C, Liu J, Tian Q, et al. Image classification by non-negative sparse coding, low-rank and sparse decomposition. In: Proceedings of the 24th Computer Vision and Pattern Recognition Conference. Colorado Springs: IEEE, 2011. 1673–1680

  5. 5

    Yu K, Zhang T, Gong Y, et al. Nonlinear learning using local coordinate coding. In: Proceedings of the 24th Advances in Neural Information Processing Systems. Vancouver: NIPS, 2009. 2223–2231

  6. 6

    Gao S, Tsang I, Chia L, et al. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans Pattern Anal Mach Intel, 2013, 35: 92–104

  7. 7

    Zheng M, Bu J, Chen C, et al. Graph regularized sparse coding for image representation. IEEE Trans Image Process, 2011, 20: 1327–1336

  8. 8

    Liu L Q, Wang L, Liu X W, et al. In defense of soft-assignment coding. In: Proceedings of the 13th Computer Vision Conference. Barcelona: IEEE, 2011. 2486–2493

  9. 9

    Wang J, Yang J, Yu K, et al. Locality-constrained linear coding for image classification. In: Proceedings of the 23th Computer Vision and Pattern Recognition Conference. San Francisco: IEEE, 2010. 3360–3367

  10. 10

    Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 19th Computer Vision and Pattern Recognition Conference. San Francisco: IEEE, 2006. 2169–2178

  11. 11

    Nesterov Y, Nesterov I U E. Introductory Lectures on Convex Optimization: A Basic Course. Berlin: Springer, 2004

  12. 12

    van Gemert J C, Veenman C J, Smeulders A W, et al. Visual word ambiguity. IEEE Trans Pattern Anal Mach Intel, 2010, 32: 1271–1283

  13. 13

    Liu Y, Wu F, Zhang Z, et al. Sparse representation using nonnegative curds and whey. In: Proceedings of the 23th Computer Vision and Pattern Recognition Conference. San Francisco: IEEE, 2010. 3578–3585

  14. 14

    Gao S, Tsang I W, Chia L- T, et al. Local features are not lonely–Laplacian sparse coding for image classification. In: Proceedings of the 23th Computer Vision and Pattern Recognition Conference. San Francisco: IEEE, 2010. 3555–3561

  15. 15

    Chung F R. Spectral Graph Theory. Washington DC: American Mathematical Society, 1997

  16. 16

    Shabou A, Le Borgne H. Locality-constrained and spatially regularized coding for scene categorization. In: Proceedings of the 25th Computer Vision and Pattern Recognition Conference. Providence: IEEE, 2012. 3618–3625

  17. 17

    Wang Z L, Feng J S, Yan S C, et al. Linear distance coding for image classification. IEEE Trans Image Process, 2013, 22: 537–548

  18. 18

    Zhang T, Ghanem B, Liu S, et al. Low-rank sparse coding for image classification. In: Proceedings of the 14th Computer Vision Conference. Sydney: IEEE, 2013. 281–288

  19. 19

    Zhang L, Ma C. Low-rank decomposition and Laplacian group sparse coding for image classification. Neurocomputing, 2014, 135: 339–347

  20. 20

    Hoyer P O. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003, 52: 547–552

  21. 21

    Duchi J, Shalev-Shwartz S, Singer Y, et al. Efficient projections onto the l1-ball for learning in high dimensions. In: Proceedings of the 25th Machine Learning Conference. Helsinki: ACM, 2008. 272–279

  22. 22

    Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math Dok, 1983, 27: 372–376

  23. 23

    Li L J, Li F F. What, where and who? Classifying events by scene and object recognition. In: Proceedings of the 11th Computer Vision Conference. Rio de Janeiro: IEEE, 2007. 1–8

  24. 24

    Li F F, Fergus R, Perona P, et al. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst, 2007, 106: 59–70

  25. 25

    Griffin G, Holub A, Perona P, et al. Caltech-256 Object Category Dataset. Technical Report. Pasadena: California Institute of Technology, 2007

  26. 26

    Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge. Int J Comput Vis, 2010, 88: 303–338

  27. 27

    Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 2004, 60: 91–110

  28. 28

    Wu J, Rehg J M. Beyond the euclidean distance: creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th Computer Vision Conference. Kyoto: IEEE, 2009. 630–637

  29. 29

    Bao C, Wu Y, Ling H, et al. Real time robust l1 tracker using accelerated proximal gradient approach. In: Proceedings of the 25th Computer Vision and Pattern Recognition Conference. Providence: IEEE, 2012. 1830–1837

  30. 30

    Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intel, 2009, 31: 210–227

  31. 31

    Zhang Q, Li B. Discriminative k-svd for dictionary learning in face recognition. In: Proceedings of the 23th Computer Vision and Pattern Recognition Conference. San Francisco: IEEE, 2010. 2691–2698

  32. 32

    Zhang C J, Liu J, Liang C, et al. Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition. Comput Vis Image Underst, 2014, 123: 14–22

  33. 33

    Perronnin F, Dance C. Fisher kernels on visual vocabularies for image categorization. In: Proceedings of the 20th Computer Vision and Pattern Recognition Conference. Minneapolis: IEEE, 2007. 1–8

  34. 34

    Zhou X, Yu K, Zhang T, et al. Image classification using super-vector coding of local image descriptors. In: Proceedings of the 11th European Conference on Computer Vision. Berlin: Springer, 2010. 6315. 141–154

  35. 35

    Chatfield K, Lempitsky V, Vedaldi A, et al. The devil is in the details: an evaluation of recent feature encoding methods. In: Proceedings of the 22nd British Machine Vision Conference. Dundee: BMVA Press, 2011. 1–12

Download references

Author information

Correspondence to Wei Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Liang, W., Wu, Y. et al. Nonnegative correlation coding for image classification. Sci. China Inf. Sci. 59, 1–14 (2016). https://doi.org/10.1007/s11432-015-5289-7

Download citation

Keywords

  • image classification
  • correlation coding
  • nonnegativity
  • locality
  • similarity
  • 012105

关键词

  • 图像分类
  • 关联编码
  • 非负性
  • 局部性
  • 相似性