CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs

  • Tianxian ZhangEmail author
  • Xiang-Gen Xia
  • Lingjiang Kong
Research Paper


In this paper, we propose a range reconstruction method for a frequency-band shared multipleinput multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) radar with sufficient cyclic prefix (CP) by using real orthogonal designs. Compared with the application of complex orthogonal designs in our previous work, the application of real orthogonal designs can significantly reduce the number of the all-zero-valued pulses in a coherent processing interval (CPI) for each transmitter and increase the efficiency of radar transmitters. Meanwhile, it still maintains the advantages of full spatial diversity without inter-range-cell interference (IRCI). We also apply the rate-1 real orthogonal designs for different numbers of transmitters and pulses for range reconstruction without any idleness of radar transmitters. Simulation results are presented to illustrate the performances of the OFDM pulse design and the CP-based MIMO OFDM radar using real orthogonal designs.


cyclic prefix (CP) inter-range-cell interference (IRCI) multiple-input multiple-output (MIMO) radar real orthogonal designs orthogonal frequency division multiplexing (OFDM) pulse 

基于循环前缀的同频MIMO OFDM雷达无自扰距离重构算法



  1. 1.

    在共享频谱的情况下, 提出了基于循环前缀的MIMO OFDM 雷达回波模型。

  2. 2.

    提出了 MIMO OFDM 雷达联合脉冲压缩和脉冲相干积累算法, 当循环前缀长度充足时, 在不同发射信号共享频谱的情况下, 实现不同发射信号频域子带的正交性, 并实现无距离旁瓣脉冲压缩。

  3. 3.

    结合实正交设计, 提出了基于 Paraunitary 滤波器组和迭代 Clipping 加滤波的两种 MIMO OFDM 波形设计算法, 实现了任意长度 MIMO OFDM 发射脉冲的联合脉冲压缩和脉冲相干积累, 并保持了不同发射信号的无互扰和无距离旁瓣脉冲压缩。



循环前缀 (CP) 同频多输入多输出 (MIMO) 雷达 实正交设计 


  1. 1.
    Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106–114CrossRefGoogle Scholar
  2. 2.
    Li J, Stoica P. MIMO Radar Signal Processing. New York: Wiley Online Library, 2008CrossRefGoogle Scholar
  3. 3.
    Wu X H, Kishk A A, Glisson A W. MIMO-OFDM radar for direction estimation. IET Radar Sonar Nav, 2010, 4: 28–36CrossRefGoogle Scholar
  4. 4.
    Cao Y-H, Xia X-G, Wang S-H. IRCI free co-located MIMO radar based on sufficient cyclic prefix OFDM waveforms. IEEE Trans Aerosp Electron Syst, 2015, 51: 2107–2120CrossRefGoogle Scholar
  5. 5.
    Cao Y-H, Xia X-G. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geosci Remote Sens Lett, 2015, 12: 1126–1130CrossRefGoogle Scholar
  6. 6.
    Meng C Z, Xu J, Xia X-G, et al. MIMO-SAR waveforms separation based on virtual polarization filter. Sci China Inf Sci, 2015, 58: 042301Google Scholar
  7. 7.
    He F, Chen Q, Dong Z, et al. Modeling and high-precision processing of the azimuth shift variation for spaceborne HRWS SAR. Sci China Inf Sci, 2013, 56: 102304Google Scholar
  8. 8.
    Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas. IEEE Signal Process Mag, 2008, 25: 116–129CrossRefGoogle Scholar
  9. 9.
    Chernyak V. Multisite radar systems composed of MIMO radars. IEEE Aerospace Electron Syst Mag, 2014, 29: 28–37CrossRefGoogle Scholar
  10. 10.
    Xu J, Dai X-Z, Xia X-G, et al. Optimizations of multisite radar system with MIMO radars for target detection. IEEE Trans Aerospace Electron Syst, 2011, 47: 2329–2343CrossRefGoogle Scholar
  11. 11.
    Antonio G S, Fuhrmann D R, Robey F C. MIMO radar ambiguity functions. IEEE J Sel Topics Signal Process, 2007, 1: 167–177CrossRefGoogle Scholar
  12. 12.
    Somaini U. Binary sequences with good autocorrelation and cross correlation properties. IEEE Trans Aerospace Electron Syst, 1975, 11: 1226–1231CrossRefGoogle Scholar
  13. 13.
    Deng H. Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated annealing. IEEE Trans Aerospace Electron Syst, 1996, 32: 98–107CrossRefGoogle Scholar
  14. 14.
    Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Trans Signal Process, 2004, 52: 3126–3135CrossRefGoogle Scholar
  15. 15.
    Khan H A, Zhang Y Y, Ji C L, et al. Optimizing polyphase sequences for orthogonal netted radar. IEEE Signal Process Lett, 2006, 13: 589–592CrossRefGoogle Scholar
  16. 16.
    He H, Stoica P, Li J. Designing unimodular sequence sets with good correlations-Including an application to MIMO radar. IEEE Trans Signal Process, 2009, 57: 4391–4405MathSciNetCrossRefGoogle Scholar
  17. 17.
    Song X F, Zhou S L, Willett P. Reducing the waveform cross correlation of MIMO radar with space-time coding. IEEE Trans Signal Process, 2010, 58: 4213–4224MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xu L, Liang Q L. Zero correlation zone sequence pair sets for MIMO radar. IEEE Trans Aerospace Electron Syst, 2012, 48: 2100–2113CrossRefGoogle Scholar
  19. 19.
    Jin Y, Wang H, Jiang W, et al. Complementary-based chaotic phase-coded waveforms design for MIMO radar. IET Radar Sonar Nav, 2013, 7: 371–382CrossRefGoogle Scholar
  20. 20.
    Xia X-G, Zhang T X, Kong L J. MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. IEEE Trans Aerospace Electron Syst, 2015, 51: 2276–2293CrossRefGoogle Scholar
  21. 21.
    Zhang T X, Xia X-G. OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Trans Geosci Remote Sens, 2015, 53: 394–404CrossRefGoogle Scholar
  22. 22.
    Zhang T X, Xia X-G, Kong L J. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse. IEEE Trans Signal Process, 2014, 62: 4748–4759MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kim J-H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR. IEEE Geosci Remote Sens Lett, 2013, 10: 568–572CrossRefGoogle Scholar
  24. 24.
    Sit Y L, Sturm C, Baier J, et al. Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In: Proceedings of IEEE Radar Conference, Atlanta, 2012. 0226–0229Google Scholar
  25. 25.
    Sen S, Nehorai A. OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Trans Signal Process, 2010, 58: 3152–3162MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lu K J, Fu S L, Xia X-G. Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/(2k) for 2k - 1 or 2k transmit antennas. IEEE Trans Inf Theory, 2005, 51: 4340–4347MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liang X-B. Orthogonal designs with maximal rates. IEEE Trans Inf Theory, 2003, 49: 2468–2503MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Geramita A V, Seberry J. Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Mathematics, Vol. 43. New York and Basel: Marcel Dekker, 1979zbMATHGoogle Scholar
  29. 29.
    Armstrong J. Peak-to-average power reduction for OFDMby repeated clipping and frequency domain filtering. Electron Lett, 2002, 38: 246–247CrossRefGoogle Scholar
  30. 30.
    Han S H, Lee J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel Commun, 2005, 12: 56–65CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.The School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.The Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations