Terahertz detector for imaging in 180-nm standard CMOS process

Abstract

A CMOS terahertz (THz) detector implemented in a 180-nm standard CMOS process is proposed, and room-temperature detection of 0.94-THz radiation is demonstrated. The detector consists of an integrated on-chip patch antenna and a source-feeding NMOS transistor as the rectifying element. To improve the power transfer efficiency between the patch antenna and NMOS transistor, a novel short-stub matching network is proposed. An open quarter-wavelength microstrip transmission line connecting gate is proposed to eliminate the influence of the bonding wire and pad on the antenna-transistor impedance matching. Illuminated by a 0.94-THz BWO source, the measured voltage responsivity (R v) and noise equivalent power (NEP) of the detector are 31 V/W and 1.1 nW/Hz1/2, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications explosives, weapons and drugs. Semicond Sci Tech, 2005, 20: S266

    Google Scholar 

  2. 2

    Liu H B, Zhong H, Karpowicz N, et al. Terahertz spectroscopy and imaging for defense and security applications. Proc IEEE, 2007, 95: 1514–1527

    Article  Google Scholar 

  3. 3

    Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening. IEEE Trans THz Sci Tech, 2011, 1: 169–182

    Article  Google Scholar 

  4. 4

    Kawase K, Shibuya T, Hayashi S, et al. THz imaging techniques for nondestructive inspections. CR Phys, 2010, 11: 510–518

    Article  Google Scholar 

  5. 5

    Ajito K, Ueno Y. THz chemical imaging for biological applications. IEEE Trans THz Sci Tech, 2011, 1: 293–300

    Article  Google Scholar 

  6. 6

    de Maagt P, Bolivar P H, Mann C. Terahertz science, engineering and systems-from space to earth applications. Encyclopedia RF Microw Eng, 2005, in press. doi: 10.1002/0471654507.eme518

    Google Scholar 

  7. 7

    Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Trans THz Sci Tech, 2011, 1: 264–273

    Article  Google Scholar 

  8. 8

    Kroug M, Cherednichenko S, Merkel H, et al. NbN hot electron bolometric mixers for terahertz receivers. IEEE Trans Appl Supercon, 2001, 11: 962–965

    Article  Google Scholar 

  9. 9

    Wang J Q, Richards P L, Beeman J W, et al. Stressed photoconductive detector for far-infrared space applications. Appl Optics, 1987, 26: 4767–4771

    Article  Google Scholar 

  10. 10

    Lü J Q, Shur M S. Terahertz detection by high-electron-mobility transistor: enhancement by drain bias. Appl Phys Lett, 2001, 78: 2587–2588

    Article  Google Scholar 

  11. 11

    Sun J D, Sun Y F, Wu D M, et al. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl Phys Lett, 2012, 100: 013506

    Article  Google Scholar 

  12. 12

    Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys Rev Lett, 1993, 71: 2465

    Article  Google Scholar 

  13. 13

    Dyakonov M, Shur M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Dev, 1996, 43: 380–387

    Article  Google Scholar 

  14. 14

    Knap W, Teppe F, Meziani Y, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl Phys Lett, 2004, 85: 675–677

    Article  Google Scholar 

  15. 15

    Al Hadi R, Sherry H, Grzyb J, et al. A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest (MTT), Baltimore, 2011. 1–4

    Google Scholar 

  16. 16

    Al Hadi R, Sherry H, Grzyb J, et al. A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS. IEEE J Solid-St Circ, 2012, 47: 2999–3012

    Article  Google Scholar 

  17. 17

    Han R, Zhang Y, Coquillat D, et al. A 280-GHz Schottky diode detector in 130-nm digital CMOS. IEEE J Solid-St Circ, 2011, 46: 2602–2612

    Article  Google Scholar 

  18. 18

    Han R, Zhang Y, Kim Y, et al. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 m digital CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2012. 254–256

    Google Scholar 

  19. 19

    Sze S M, Ng K K. Physics of Semiconductor Devices. Hoboken: John Wiley & Sons, 2006

    Google Scholar 

  20. 20

    Ojefors E, Pfeiffer U R, Lisauskas A, et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J Solid-St Circ, 2009, 44: 1968–1976

    Article  Google Scholar 

  21. 21

    Sentaurus Device User Guide, Ver. D-2010.03, Synopsis Inc., Mountain View, CA, Mar. 2010

  22. 22

    Kraus J D, Marhefka R J. Antenna for all Applications. Upper Saddle River: McGraw Hill, 2002

    Google Scholar 

  23. 23

    Pozar D M. Microwave Engineering. Hoboken: John Wiley & Sons, 2009

    Google Scholar 

  24. 24

    Liu Z Y, Liu L Y, Wu N J. Design of 1-THz field effect transistor detectors in 180-nm standard CMOS process. In: Proceedings of ISPDI 5th International Symposium on Photoelectronic Detection and Imaging, Beijing, 2013. 89091E

    Google Scholar 

  25. 25

    Pfeiffer U R, Ojefors E. A 600-GHz CMOS focal-plane array for terahertz imaging applications. In: Proceedings of the 34th European Solid-State Circuits Conference, Edinburgh, 2008. 110–113

    Google Scholar 

  26. 26

    Ojefors E, Baktash N, Zhao Y, et al. Terahertz imaging detectors in a 65-nm CMOS SOI technology. In: Proceedings of European Solid-State Circuits Conference, Sevilla, 2010. 486–489

    Google Scholar 

  27. 27

    OAD-7 Golay Detector Operating Manual, QMC Instruments Ltd., Cardiff, U.K., Jan. 4, 2005

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2016YFA0202202), National Natural Science Foundation of China (Grant Nos. 61474108, 61331003), Beijing Natural Science Foundation (Grant No. 4152051), and Chinese Academy of Sciences. The authors are grateful to Prof. H. Qin and Dr. J. D. Sun of Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, for the measurement support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liyuan Liu.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, L., Zhang, Z. et al. Terahertz detector for imaging in 180-nm standard CMOS process. Sci. China Inf. Sci. 60, 082401 (2017). https://doi.org/10.1007/s11432-015-0976-9

Download citation

Keywords

  • terahertz detector
  • terahertz imaging
  • CMOS
  • patch antenna
  • matching network